The main idea is to convert TFRecords into numpy arrays. Assume that the TFRecord stores images. Specifically:
- Read a TFRecord File and convert each image into a numpy array.
- Write the image into 1.jpg, 2.jpg, etc.
- At the same time, write the file name and label to the text file like this:
1.jpg 2
2.jpg 4
3.jpg 5
I currently use the following code:
import tensorflow as tf
import os
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64)
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
label = tf.cast(features['label'], tf.int32)
height = tf.cast(features['height'], tf.int32)
width = tf.cast(features['width'], tf.int32)
depth = tf.cast(features['depth'], tf.int32)
return image, label, height, width, depth
with tf.Session() as sess:
filename_queue = tf.train.string_input_producer(["../data/svhn/svhn_train.tfrecords"])
image, label, height, width, depth = read_and_decode(filename_queue)
image = tf.reshape(image, tf.pack([height, width, 3]))
image.set_shape([32,32,3])
init_op = tf.initialize_all_variables()
sess.run(init_op)
print (image.eval())
I'm just reading trying to get at least one image for starters. The code just gets stuck when I run this.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…