Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
566 views
in Technique[技术] by (71.8m points)

pyspark - Apache spark dealing with case statements

I am dealing with transforming SQL code to PySpark code and came across some SQL statements. I don't know how to approach case statments in pyspark? I am planning on creating a RDD and then using rdd.map and then do some logic checks. Is that the right approach? Please help!

Basically I need to go through each line in the RDD or DF and based on some logic I need to edit one of the column values.

     case  
               when (e."a" Like 'a%' Or e."b" Like 'b%') 
                And e."aa"='BW' And cast(e."abc" as decimal(10,4))=75.0 Then 'callitA'

               when (e."a" Like 'b%' Or e."b" Like 'a%') 
                And e."aa"='AW' And cast(e."abc" as decimal(10,4))=75.0 Then 'callitB'

else

'CallitC'
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

These are few ways to write If-Else / When-Then-Else / When-Otherwise expression in pyspark.

Sample dataframe

df = spark.createDataFrame([(1,1),(2,2),(3,3)],['id','value'])

df.show()

#+---+-----+
#| id|value|
#+---+-----+
#|  1|    1|
#|  2|    2|
#|  3|    3|
#+---+-----+

#Desired Output:
#+---+-----+----------+
#| id|value|value_desc|
#+---+-----+----------+
#|  1|    1|       one|
#|  2|    2|       two|
#|  3|    3|     other|
#+---+-----+----------+

Option#1: withColumn() using when-otherwise

from pyspark.sql.functions import when

df.withColumn("value_desc",when(df.value == 1, 'one').when(df.value == 2, 'two').otherwise('other')).show()

Option#2: select() using when-otherwise

from pyspark.sql.functions import when

df.select("*",when(df.value == 1, 'one').when(df.value == 2, 'two').otherwise('other').alias('value_desc')).show()

Option3: selectExpr() using SQL equivalent CASE expression

df.selectExpr("*","CASE WHEN value == 1 THEN  'one' WHEN value == 2 THEN  'two' ELSE 'other' END AS value_desc").show()

SQL like expression can also be written in withColumn() and select() using pyspark.sql.functions.expr function. Here are examples.

Option4: select() using expr function

from pyspark.sql.functions import expr 

df.select("*",expr("CASE WHEN value == 1 THEN  'one' WHEN value == 2 THEN  'two' ELSE 'other' END AS value_desc")).show()

Option5: withColumn() using expr function

from pyspark.sql.functions import expr 

df.withColumn("value_desc",expr("CASE WHEN value == 1 THEN  'one' WHEN value == 2 THEN  'two' ELSE 'other' END AS value_desc")).show()

Output:

#+---+-----+----------+
#| id|value|value_desc|
#+---+-----+----------+
#|  1|    1|       one|
#|  2|    2|       two|
#|  3|    3|     other|
#+---+-----+----------+

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...