Trying to use dplyr
to group_by
the stud_ID
variable in the following data frame, as in this SO question:
> str(df)
'data.frame': 4136 obs. of 4 variables:
$ stud_ID : chr "ABB112292" "ABB112292" "ABB112292" "ABB112292" ...
$ behavioral_scale: num 3.5 4 3.5 3 3.5 2 NA NA 1 2 ...
$ cognitive_scale : num 3.5 3 3 3 3.5 2 NA NA 1 1 ...
$ affective_scale : num 2.5 3.5 3 3 2.5 2 NA NA 1 1.5 ...
I tried the following to obtain scale scores by student (rather than scale scores for observations across all students):
scaled_data <-
df %>%
group_by(stud_ID) %>%
mutate(behavioral_scale_ind = scale(behavioral_scale),
cognitive_scale_ind = scale(cognitive_scale),
affective_scale_ind = scale(affective_scale))
Here is the result:
> str(scaled_data)
Classes ‘grouped_df’, ‘tbl_df’, ‘tbl’ and 'data.frame': 4136 obs. of 7 variables:
$ stud_ID : chr "ABB112292" "ABB112292" "ABB112292" "ABB112292" ...
$ behavioral_scale : num 3.5 4 3.5 3 3.5 2 NA NA 1 2 ...
$ cognitive_scale : num 3.5 3 3 3 3.5 2 NA NA 1 1 ...
$ affective_scale : num 2.5 3.5 3 3 2.5 2 NA NA 1 1.5 ...
$ behavioral_scale_ind: num [1:12, 1] 0.64 1.174 0.64 0.107 0.64 ...
..- attr(*, "scaled:center")= num 2.9
..- attr(*, "scaled:scale")= num 0.937
$ cognitive_scale_ind : num [1:12, 1] 1.17 0.64 0.64 0.64 1.17 ...
..- attr(*, "scaled:center")= num 2.4
..- attr(*, "scaled:scale")= num 0.937
$ affective_scale_ind : num [1:12, 1] 0 1.28 0.64 0.64 0 ...
..- attr(*, "scaled:center")= num 2.5
..- attr(*, "scaled:scale")= num 0.782
The three scaled variables (behavioral_scale
, cognitive_scale
, and affective_scale
) have only 12 observations - the same number of observations for the first student, ABB112292
.
What's going on here? How can I obtain scaled scores by individual?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…