Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
951 views
in Technique[技术] by (71.8m points)

excel - Python Pandas - Read csv file containing multiple tables

I have a single .csv file containing multiple tables.

Using Pandas, what would be the best strategy to get two DataFrame inventory and HPBladeSystemRack from this one file ?

The input .csv looks like this:

Inventory       
System Name            IP Address    System Status
dg-enc05                             Normal
dg-enc05_vc_domain                   Unknown
dg-enc05-oa1           172.20.0.213  Normal

HP BladeSystem Rack         
System Name               Rack Name   Enclosure Name
dg-enc05                  BU40  
dg-enc05-oa1              BU40        dg-enc05
dg-enc05-oa2              BU40        dg-enc05

The best I've come up with so far is to convert this .csv file into Excel workbook (xlxs), split the tables into sheets and use:

inventory = read_excel('path_to_file.csv', 'sheet1', skiprow=1)
HPBladeSystemRack = read_excel('path_to_file.csv', 'sheet2', skiprow=2)

However:

  • This approach requires xlrd module.
  • Those log files have to be analyzed in real time, so that it would be way better to find a way to analyze them as they come from the logs.
  • The real logs have far more tables than those two.
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

If you know the table names beforehand, then something like this:

df = pd.read_csv("jahmyst2.csv", header=None, names=range(3))
table_names = ["Inventory", "HP BladeSystem Rack", "Network Interface"]
groups = df[0].isin(table_names).cumsum()
tables = {g.iloc[0,0]: g.iloc[1:] for k,g in df.groupby(groups)}

should work to produce a dictionary with keys as the table names and values as the subtables.

>>> list(tables)
['HP BladeSystem Rack', 'Inventory']
>>> for k,v in tables.items():
...     print("table:", k)
...     print(v)
...     print()
...     
table: HP BladeSystem Rack
              0          1               2
6   System Name  Rack Name  Enclosure Name
7      dg-enc05       BU40             NaN
8  dg-enc05-oa1       BU40        dg-enc05
9  dg-enc05-oa2       BU40        dg-enc05

table: Inventory
                    0             1              2
1         System Name    IP Address  System Status
2            dg-enc05           NaN         Normal
3  dg-enc05_vc_domain           NaN        Unknown
4        dg-enc05-oa1  172.20.0.213         Normal

Once you've got that, you can set the column names to the first rows, etc.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...