In the first case, the x_delayed(0)
actually has two drivers, out outside the
process, being x_delayed(0) <= x
, and an implicit one inside the DELAY
process.
The driver inside the process is a consequence of a VHDL standard concept
called "longest static prefix", described in VHDL-2002 standard (IEEE Std
1076-2002) section "6.1 Names", and the loop construction with a loop variable
i
, whereby the longest static prefix for x_delayed(i)
is x_delayed
.
The VHDL standard then further describes drives for processes in section
"12.6.1 Drivers", which says "... There is a single driver for a given scalar
signal S in a process statement, provided that there is at least one signal
assignment statement in that process statement and that the longest static
prefix of the target signal of that signal assignment statement denotes S ...".
So as a (probably surprising) consequence the x_delayed(0)
has a driver in
the DELAY process, which drives all std_logic elements to 'U' since unassigned,
whereby the std_logic resolution function causes the resulting value to be 'U',
no matter what value is driven by the external x_delayed(0) <= x
.
But in the case of your code, there seems to be more to it, since there actually are some "0" values in the simulation output for x_delayed(0)
, for what I can see from the figures. However, it is hard to dig further into this when I do not have the entire code.
One way to see that the loop is the reason, is to manually roll out the loop by
replacing the for ... loop
with:
x_delayed(1) <= x_delayed(1-1);
x_delayed(2) <= x_delayed(2-1);
...
x_delayed(NTAPS) <= x_delayed(NTAPS-1);
This is of course not a usable solution for configurable modules with NTAPS as
a generic, but it may be interesting to see that the operation then is as
intuitively expected.
EDIT: Multiple solutions are listed in "edit" sections after the question above, based on comments. A solution with variable, which allows for complex expressions if required, is shown below. If complex expression is not required, then as per OllieB's suggestion it is possible to reduce the assign to x_delayed(1 to x_delayed_dir'high) <= x_delayed(0 to x_delayed_dir'high-1)
:
x_delayed(0) <= x;
DELAYS : process(samp_clk)
variable x_delayed_v : slv32_array(1 to NTAPS-1);
begin
if rising_edge(samp_clk) then
for i in 1 to NTAPS-1 loop
x_delayed_v(i) := x_delayed(i-1); -- More complex operations are also possible
end loop;
x_delayed(1 to x_delayed_dir'high) <= x_delayed_v;
end if; -- rising_edge(samp_clk)
end process;