I have a data frame that looks like this:
Store Temperature Unemployment Sum_Sales
1 1 42.31 8.106 1643691
2 1 38.51 8.106 1641957
3 1 39.93 8.106 1611968
4 1 46.63 8.106 1409728
5 1 46.50 8.106 1554807
6 1 57.79 8.106 1439542
For each 'Store', I want to normalize/scale two columns ("Sum_sales" and "Temperature").
Desired output:
Store Temperature Unemployment Sum_Sales
1 1 1.000 8.106 1.00000
2 1 0.000 8.106 0.94533
3 1 0.374 8.106 0.00000
4 2 0.012 8.106 0.00000
5 2 0.000 8.106 1.00000
6 2 1.000 8.106 0.20550
Here is the normalizing function that I created:
normalit<-function(m){
(m - min(m))/(max(m)-min(m))
}
What I have tried:
df2 <- df %.%
group_by('Store') %.%
summarise(Temperature = normalit(Temperature), Sum_Sales = normalit(Sum_Sales)))
Any suggestions/help would be greatly appreciated. Thanks.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…