I create the data set by
data <- read.table( text=" Date Hour Melbourne Southern Flagstaff
1 2009-05-01 0 0 5 17
2 2009-05-01 2 0 2 1
3 2009-05-01 1 0 11 0
4 2009-05-01 3 0 3 8
5 2009-05-01 4 0 1 0
6 2009-05-01 5 0 49 79
7 2009-05-01 6 0 425 610",
header=TRUE,stringsAsFactors=FALSE)
You can do the summation with the function aggregate
:
byday <- aggregate(cbind(Melbourne,Southern,Flagstaff)~Date,
data=data,FUN=sum)
library(lubridate)
bymonth <- aggregate(cbind(Melbourne,Southern,Flagstaff)~month(Date),
data=data,FUN=sum)
Look at ?aggregate
to understand the function better. Starting with the last argument (because that makes explaining easier) the arguments do the following:
FUN
is the function that should be used for the aggregation. I use sum
to sum up the values, but i could also be mean
, max
or some function you wrote yourself.
data
is used to indicate that data frame that I want to aggregate.
- The first argument tells the function what exactly I want to aggregate. On the left side of the
~
, I indicate the variables I want to aggregate. If there is more than one, they are combined with cbind
. On the right hand side is the variable by which the data should be split. Putting Date
means that aggregate will sum up the variables for each distinct value of Date
.
For the aggregation by month, I used the function month
from the package lubridate
. It does what one expects: it returns a numeric value indicating the month for a given date. Maybe you first need to install the package by install.packages("lubridate")
.
If you prefer not to use lubridate, you could do the following instead:
data <- transform(data,month=as.numeric(format(as.Date(Date),"%m")))
bymonth <- aggregate(cbind(Melbourne,Southern,Flagstaff)~month,
data=data,FUN=sum)
Here I added a new column to data that contains the month and then aggregated by that column.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…