Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
293 views
in Technique[技术] by (71.8m points)

r - Fit many formulae at once, faster options than lapply?

I have a list for formulas I want to fit to data, rather than running a loop I'd like to do this at once, for performance's sake. The estimations should still be separate, I'm not trying to estimate a SUR or anything. The following code does what I want

x <- matrix(rnorm(300),ncol=3)
y <- x %*% c(1,2,3)+rnorm(100)
formulae <-list(y~x[,1],
                y~x[,2],
                y~x[,1] + x[,2])
lapply(formulae,lm)

Unfortunately this gets somewhat slow as the length of formulae increases is there a way to truly vectorize this?

If it is any help, the only results of lm I care about are coefficients, and some standard errors.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

As I said in my comment, what you really need is a more efficient yet stable fitting routine other than lm(). Here I would provide you a well tested one written myself, called lm.chol(). It takes a formula and data, and returns:

  • a coefficient summary table, as you normally see in summary(lm(...))$coef;
  • Pearson estimate of residual standard error, as you get from summary(lm(...))$sigma;
  • adjusted-R.squared, as you get from summary(lm(...))$adj.r.squared.

## linear model estimation based on pivoted Cholesky factorization with Jacobi preconditioner
lm.chol <- function(formula, data) {
  ## stage0: get response vector and model matrix
  ## we did not follow the normal route: match.call, model.frame, model.response, model matrix, etc
  y <- data[[as.character(formula[[2]])]]
  X <- model.matrix(formula, data)
  n <- nrow(X); p <- ncol(X)
  ## stage 1: XtX and Jacobi diagonal preconditioner
  XtX <- crossprod(X)
  D <- 1 / sqrt(diag(XtX))
  ## stage 2: pivoted Cholesky factorization
  R <- suppressWarnings(chol(t(D * t(D * XtX)), pivot = TRUE))
  piv <- attr(R, "pivot")
  r <- attr(R, "rank")
  if (r < p) {
    warning("Model is rank-deficient!")
    piv <- piv[1:r]
    R <- R[1:r, 1:r]
    }
  ## stage 3: solve linear system for coefficients
  D <- D[piv]
  b <- D * crossprod(X, y)[piv]
  z <- forwardsolve(t(R), b)
  RSS <- sum(y * y) - sum(z * z)
  sigma <- sqrt(RSS / (n - r))
  para <- D * backsolve(R, z)
  beta.hat <- rep(NA, p)
  beta.hat[piv] <- para
  ## stage 4: get standard error
  Rinv <- backsolve(R, diag(r))
  se <- rep(NA, p)
  se[piv] <- D * sqrt(rowSums(Rinv * Rinv)) * sigma
  ## stage 5: t-statistic and p-value
  t.statistic <- beta.hat / se
  p.value <- 2 * pt(-abs(t.statistic), df = n - r)
  ## stage 6: construct coefficient summary matrix
  coefficients <- matrix(c(beta.hat, se, t.statistic, p.value), ncol = 4L)
  colnames(coefficients) <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)")
  rownames(coefficients) <- colnames(X)
  ## stage 7: compute adjusted R.squared
  adj.R2 <- 1 - sigma * sigma / var(y)
  ## return model fitting results
  attr(coefficients, "sigma") <- sigma
  attr(coefficients, "adj.R2") <- adj.R2
  coefficients
  }

Here I would offer three examples.


Example 1: full rank linear model

We take R's built-in dataset trees as an example.

# using `lm()`
summary(lm(Height ~ Girth + Volume, trees))
#Coefficients:
#            Estimate Std. Error t value Pr(>|t|)    
#(Intercept)  83.2958     9.0866   9.167 6.33e-10 ***
#Girth        -1.8615     1.1567  -1.609   0.1188    
#Volume        0.5756     0.2208   2.607   0.0145 *  
#---
#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

#Residual standard error: 5.056 on 28 degrees of freedom
#Multiple R-squared:  0.4123,   Adjusted R-squared:  0.3703 
#F-statistic:  9.82 on 2 and 28 DF,  p-value: 0.0005868

## using `lm.chol()`
lm.chol(Height ~ Girth + Volume, trees)
#              Estimate Std. Error   t value     Pr(>|t|)
#(Intercept) 83.2957705  9.0865753  9.166905 6.333488e-10
#Girth       -1.8615109  1.1566879 -1.609346 1.187591e-01
#Volume       0.5755946  0.2208225  2.606594 1.449097e-02
#attr(,"sigma")
#[1] 5.056318
#attr(,"adj.R2")
#[1] 0.3702869

The results are exactly the same!


Example 2: rank-deficient linear model

## toy data
set.seed(0)
dat <- data.frame(y = rnorm(100), x1 = runif(100), x2 = rbeta(100,3,5))
dat$x3 <- with(dat, (x1 + x2) / 2)

## using `lm()`
summary(lm(y ~ x1 + x2 + x3, dat))
#Coefficients: (1 not defined because of singularities)
#            Estimate Std. Error t value Pr(>|t|)
#(Intercept)   0.2164     0.2530   0.856    0.394
#x1           -0.1526     0.3252  -0.469    0.640
#x2           -0.3534     0.5707  -0.619    0.537
#x3                NA         NA      NA       NA

#Residual standard error: 0.8886 on 97 degrees of freedom
#Multiple R-squared:  0.0069,   Adjusted R-squared:  -0.01358 
#F-statistic: 0.337 on 2 and 97 DF,  p-value: 0.7147

## using `lm.chol()`
lm.chol(y ~ x1 + x2 + x3, dat)
#              Estimate Std. Error    t value  Pr(>|t|)
#(Intercept)  0.2164455  0.2529576  0.8556595 0.3942949
#x1                  NA         NA         NA        NA
#x2          -0.2007894  0.6866871 -0.2924030 0.7706030
#x3          -0.3051760  0.6504256 -0.4691944 0.6399836
#attr(,"sigma")
#[1] 0.8886214
#attr(,"adj.R2")
#[1] -0.01357594
#Warning message:
#In lm.chol(y ~ x1 + x2 + x3, dat) : Model is rank-deficient!

Here, lm.chol() based on Cholesky factorization with complete pivoting and lm() based on QR factorization with partial pivoting have shrunk different coefficients to NA. But two estimation are equivalent, with the same fitted values and residuals.


Example 3: performance for large linear models

n <- 10000; p <- 300
set.seed(0)
dat <- as.data.frame(setNames(replicate(p, rnorm(n), simplify = FALSE), paste0("x",1:p)))
dat$y <- rnorm(n)

## using `lm()`
system.time(lm(y ~ ., dat))
#   user  system elapsed 
#  3.212   0.096   3.315

## using `lm.chol()`
system.time(lm.chol(y ~ ., dat))
#   user  system elapsed 
#  1.024   0.028   1.056

lm.chol() is 3 ~ 4 times faster than lm(). If you want to know the reason, read my this answer.


Remark

I have focused on improving performance on computational kernel. You can take one step further, by using Ben Bolker's parallelism suggestion. If my approach gives 3 times boost, and parallel computing gives 3 times boost on 4 cores, you end up with 9 times boost!


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...