Here is a pragmatic solution.
d = {u'instrument': u'EUR_USD',
u'candles': [
{u'complete': True, u'closeMid': 1.26549, u'highMid': 1.27026, u'lowMid': 1.25006, u'volume': 138603, u'openMid': 1.26864, u'time': u'2014-09-29T21:00:00.000000Z'},
{u'complete': True, u'closeMid': 1.275215, u'highMid': 1.27915, u'lowMid': 1.25838, u'volume': 164677, u'openMid': 1.265485, u'time': u'2014-10-06T21:00:00.000000Z'},
{u'complete': True, u'closeMid': 1.279995, u'highMid': 1.288645, u'lowMid': 1.26249, u'volume': 207189, u'openMid': 1.27537, u'time': u'2014-10-13T21:00:00.000000Z'},
{u'complete': True, u'closeMid': 1.269775, u'highMid': 1.28403, u'lowMid': 1.261385, u'volume': 125266, u'openMid': 1.280145, u'time': u'2014-10-20T21:00:00.000000Z'},
{u'complete': True, u'closeMid': 1.24819, u'highMid': 1.27707, u'lowMid': 1.243775, u'volume': 210030, u'openMid': 1.270125, u'time': u'2014-10-27T21:00:00.000000Z'},
{u'complete': True, u'closeMid': 1.242075, u'highMid': 1.25774, u'lowMid': 1.23582, u'volume': 246530, u'openMid': 1.24841, u'time': u'2014-11-03T22:00:00.000000Z'},
{u'complete': True, u'closeMid': 1.244995, u'highMid': 1.25774, u'lowMid': 1.239455, u'volume': 167259, u'openMid': 1.242075, u'time': u'2014-11-10T22:00:00.000000Z'}
]}
df = pd.DataFrame.from_dict(d).join(pd.DataFrame.from_dict(d['candles'])).drop('candles', axis=1)
df
Edit
The problem is quite different here and requires a new answer based on the same principle, but more complex.
# Test data
d = {u'instruments': [
{u'instrument': u'EUR_USD',
u'interestRate': {u'EUR': {u'ask': 0.004, u'bid': 0.1},
u'USD': {u'ask': 0.004, u'bid':0}}},
{u'instrument': u'EUR_USD2',
u'interestRate': {u'EUR': {u'ask': 0.05, u'bid': 0.2},
u'USD2': {u'ask': 0.6, u'bid':0.1}}}
]}
# Creating an empty DataFrame
df = DataFrame()
# Iterating over the instruments list
for item in d['instruments']:
df = pd.concat([df, pd.DataFrame.from_dict(item)
.join(pd.DataFrame.from_dict(item['interestRate'], orient='index'))])
# Performing some cleaning to get back a proper interestRate column
df = df.drop('interestRate', axis=1).reset_index().rename(columns={'index':'interestRate'})
print(df)
interestRate instrument bid ask
0 EUR EUR_USD 0.1 4.00e-03
1 USD EUR_USD 0.0 4.00e-03
2 EUR EUR_USD2 0.2 5.00e-02
3 USD2 EUR_USD2 0.1 6.00e-01