Anticipate where rebalancing will be needed. If you are using a tree that requires o(lg n) rebalancing but you know where that rebalancing will be needed and you can get there quickly enough, you can perform your deque operations in o(lg n) time. Deques that use this as a strategy will store not just two pointers into the deque (the ends of the left and right spines, as discussed above), but some small number of jump pointers to places higher along the spines. Deque operations can then access the roots of the trees pointed to by the jump pointers in O(1) time. If o(lg n) jump pointers are maintained for all of the places where rebalancing (or changing node information) will be needed, deque operations can take o(lg n) time.
(Of course, this makes the tree actually a dag, since the trees on the spines pointed to by jump pointers are also pointed to by their children on the spine. Immutable data structures don't usually get along with non-tree graphs, since replacing a node pointed to by more than one other node requires replacing all of the other nodes that point to it. I have seen this fixed by just eliminating the non-jump pointers, turning the dag back into a tree. One can then store a singly-linked list with jump pointers as a list of lists. Each subordinate list contains all of the nodes between the head of that list and its jump pointer. This requires some care to deal with partially overlapping jump pointers, and a full explanation is probably not appropriate for this aside.)
This is one of the tricks used by Tsakalidis in his paper "AVL Trees for localized search" to allow O(1) deque operations on AVL trees with a relaxed balance condition. It is also the main idea used by Kaplan and Tarjan in their paper "Purely functional, real-time deques with catenation" and a later refinement of that by Mihaesau and Tarjan. Munro et al.'s "Deterministic Skip Lists" also deserves a mention here, though translating skip lists to an immutable setting by using trees sometimes changes the properties that allow such efficient modification near the ends. For examples of the translation, see Messeguer's "Skip trees, an alternative data structure to Skip lists in a concurrent approach", Dean and Jones's "Exploring the duality between skip lists and binary search trees", and Lamoureux and Nickerson's "On the Equivalence of B-trees and deterministic skip lists".
Do the work in bulk. In the full binary tree example above, no rebalancing is needed on a push, but Ω(lg n) nodes need to have their height or balance information updated. Instead of actually doing the incrementation, you could simply mark the spine at the ends as needing incrementation.
One way to understand this process is by analogy to binary numbers. (2^n)-1 is represented in binary by a string of n 1's. When adding 1 to this number, you need to change all of the 1's to 0's and then add a 1 at the end. The following Haskell encodes binary numbers as non-empty strings of bits, least significant first.
data Bit = Zero | One
type Binary = (Bit,[Bit])
incr :: Binary -> Binary
incr (Zero,x) = (One,x)
incr (One,[]) = (Zero,[One])
incr (One,(x:xs)) =
let (y,ys) = incr (x,xs)
in (Zero,y:ys)
incr is a recursive function, and for numbers of the form (One,replicate k One)
, incr calls itself Ω(k) times.
Instead, we might represent groups of equal bits by only the number of bits in the group. Neighboring bits or groups of bits are combined into one group if they are equal (in value, not in number). We can increment in O(1) time:
data Bits = Zeros Int | Ones Int
type SegmentedBinary = (Bits,[Bits])
segIncr :: SegmentedBinary -> SegmentedBinary
segIncr (Zeros 1,[]) = (Ones 1,[])
segIncr (Zeros 1,(Ones n:rest)) = (Ones (n+1),rest)
segIncr (Zeros n,rest) = (Ones 1,Zeros (n-1):rest)
segIncr (Ones n,[]) = (Zeros n,[Ones 1])
segIncr (Ones n,(Zeros 1:Ones m:rest)) = (Zeros n,Ones (m+1):rest)
segIncr (Ones n,(Zeros p:rest)) = (Zeros n,Ones 1:Zeros (p-1):rest)
Since segIncr is not recursive and doesn't call any functions other than plus and minus on Ints, you can see it takes O(1) time.
Some of the deques mentioned in the section above entitled "Anticipate where rebalancing will be needed" actually use a different numerically-inspired technique called "redundant number systems" to limit the rebalancing work to O(1) and locate it quickly. Redundant numerical representations are fascinating, but possibly too far afield for this discussion. Elmasry et al.'s "Strictly-regular number system and data structures" is not a bad place to start reading about that topic. Hinze's "Bootstrapping one-sided flexible arrays" may also be useful.
In "Making data structures persistent", Driscoll et al. describe lazy recoloring, which they attribute to Tsakalidis. They apply it to red-black trees, which can be rebalanced after insertion or deletion with O(1) rotations (but Ω(lg n) recolorings) (see Tarjan's "Updataing a balanced tree in O(1) rotations"). The core of the idea is to mark a large path of nodes that need to be recolored but not rotated. A similar idea is used on AVL trees in the older versions of Brown & Tarjan's "A fast merging algorithm". (Newer versions of the same work use 2-3 trees; I have not read the newer ones and I do not know if they use any techniques like lazy recoloring.)