[res.on.arguments] is a statement about how the client should use the std::lib. When the client sends an xvalue to a std::lib function, the client has to be willing to pretend that the xvalue is really a prvalue, and expect the std::lib to take advantage of that.
However when the client calls std::swap(x, x), the client isn't sending an xvalue to a std::lib function. It is the implementation that is doing so instead. And so the onus is on the implementation to make std::swap(x, x) work.
That being said, the std has given the implementor a guarantee: X shall satisfy MoveAssignable
. Even if in a moved-from state, the client must ensure that X is MoveAssignable. Furthermore, the implementation of std::swap
doesn't really care what self-move-assignment does, as long as it is not undefined behavior for X. I.e. as long as it doesn't crash.
a = std::move(b);
When &a == &b, both the source and target of this assignment have an unspecified (moved-from) value. This can be a no-op, or it can do something else. As long as it doesn't crash, std::swap will work correctly. This is because in the next line:
b = std::move(tmp);
Whatever value went into a
from the previous line is going to be given a new value from tmp
. And tmp
has the original value of a
. So besides burning up a lot of cpu cycles, swap(a, a)
is a no-op.
Update
The latest working draft, N4618 has been modified to clearly state that in the MoveAssignable
requirements the expression:
t = rv
(where rv
is an rvalue), t
need only be the equivalent value of rv
prior to the assignment if t
and rv
do not reference the same object. And regardless, rv
's state is unspecified after the assignment. There is an additional note for further clarification:
rv
must still meet the requirements of the library component that is using it, whether or not t
and rv
refer to the same object.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…