Consider the following data frame:
df <- data.frame(replicate(5,sample(1:10,10,rep=TRUE)))
# X1 X2 X3 X4 X5
#1 7 9 8 4 10
#2 2 4 9 4 9
#3 2 7 8 8 6
#4 8 9 6 6 4
#5 5 2 1 4 6
#6 8 2 2 1 7
#7 3 8 6 1 6
#8 3 8 5 9 8
#9 6 2 3 10 7
#10 2 7 4 2 9
Using dplyr
, how can I filter, on each column (without implicitly naming them), for all values greater than 2.
Something that would mimic an hypothetical filter_each(funs(. >= 2))
Right now I'm doing:
df %>% filter(X1 >= 2, X2 >= 2, X3 >= 2, X4 >= 2, X5 >= 2)
Which is equivalent to:
df %>% filter(!rowSums(. < 2))
Note: Let's say I wanted to filter only on the first 4 columns, I would do:
df %>% filter(X1 >= 2, X2 >= 2, X3 >= 2, X4 >= 2)
or
df %>% filter(!rowSums(.[-5] < 2))
Would there be a more efficient alternative ?
Edit: sub question
How to specify a column name and mimic an hypothethical filter_each(funs(. >= 2), -X5)
?
Benchmark sub question
Since I have to run this on a large dataset, I benchmarked the suggestions.
df <- data.frame(replicate(5,sample(1:10,10e6,rep=TRUE)))
mbm <- microbenchmark(
Marat = df %>% filter(!rowSums(.[,!colnames(.) %in% "X5", drop = FALSE] < 2)),
Richard = filter_(df, .dots = lapply(names(df)[names(df) != "X5"], function(x, y) { call(">=", as.name(x), y) }, 2)),
Docendo = df %>% slice(which(!rowSums(select(., -matches("X5")) < 2L))),
times = 50
)
Here are the results:
#Unit: milliseconds
# expr min lq mean median uq max neval
# Marat 1209.1235 1320.3233 1358.7994 1362.0590 1390.342 1448.458 50
# Richard 1151.7691 1196.3060 1222.9900 1216.3936 1256.191 1266.669 50
# Docendo 874.0247 933.1399 983.5435 985.3697 1026.901 1053.407 50
See Question&Answers more detail:
os