Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
487 views
in Technique[技术] by (71.8m points)

python - Limit/mask matplotlib contour to data area

I have a pandas DataFrame with non-uniformly spaced data points given by an x, y and z column, where x and y are pairs of variables and z is the dependent variable. For example:

import matplotlib.pyplot as plt
from matploblib.mlab import griddata
import numpy as np
import pandas as pd

df = pd.DataFrame({'x':[0, 0, 1, 1, 3, 3, 3, 4, 4, 4], 
                   'y':[0, 1, 0, 1, 0.2, 0.7, 1.4, 0.2, 1.4, 2], 
                   'z':[50, 40, 40, 30, 30, 30, 20, 20, 20, 10]})

x = df['x']
y = df['y']
z = df['z']

I want to do a contour plot of the dependent variable z over x and y. For this, I create a new grid to interpolate the data on using matplotlib.mlab's griddata function.

xi = np.linspace(x.min(), x.max(), 100)
yi = np.linspace(y.min(), y.max(), 100)
z_grid = griddata(x, y, z, xi, yi, interp='linear')
plt.contourf(xi, yi, z_grid, 15)
plt.scatter(x, y, color='k') # The original data points
plt.show()

While this works, the output is not what I want. I do not want griddata to interpolate outside of the boundaries given by the min and max values of the x and y data. The following plots are what shows up after calling plt.show(), and then highlighted in purple what area of the data I want to have interpolated and contoured. The contour outside the purple line is supposed to be blank. How could I go about masking the outlying data?

Plot as created by mplPlot as it should be

The linked question does unfortunately not answer my question, as I don't have a clear mathematical way to define the conditions on which to do a triangulation. Is it possible to define a condition to mask the data based on the data alone, taking the above Dataframe as an example?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

As seen in the answer to this question one may introduce a condition to mask the values.

The sentence from the question "I do not want griddata to interpolate outside of the boundaries given by the min and max values of the x and y data." implies that there is some min/max condition present, which can be used.

Should that not be the case, one may clip the contour using a path. The points of this path need to be specified as there is no generic way of knowing which points should be the edges. The code below does this for three different possible paths.

import matplotlib.pyplot as plt
from matplotlib.path import Path
from matplotlib.patches import PathPatch
from matplotlib.mlab import griddata
import numpy as np
import pandas as pd

df = pd.DataFrame({'x':[0, 0, 1, 1, 3, 3, 3, 4, 4, 4], 
                   'y':[0, 1, 0, 1, 0.2, 0.7, 1.4, 0.2, 1.4, 2], 
                   'z':[50, 40, 40, 30, 30, 30, 20, 20, 20, 10]})

x = df['x']
y = df['y']
z = df['z']

xi = np.linspace(x.min(), x.max(), 100)
yi = np.linspace(y.min(), y.max(), 100)
z_grid = griddata(x, y, z, xi, yi, interp='linear')

clipindex = [ [0,2,4,7,8,9,6,3,1,0],
              [0,2,4,7,5,8,9,6,3,1,0],
              [0,2,4,7,8,9,6,5,3,1,0]]

fig, axes = plt.subplots(ncols=3, sharey=True)
for i, ax in enumerate(axes):
    cont = ax.contourf(xi, yi, z_grid, 15)
    ax.scatter(x, y, color='k') # The original data points
    ax.plot(x[clipindex[i]], y[clipindex[i]], color="crimson")

    clippath = Path(np.c_[x[clipindex[i]], y[clipindex[i]]])
    patch = PathPatch(clippath, facecolor='none')
    ax.add_patch(patch)
    for c in cont.collections:
        c.set_clip_path(patch)

plt.show()

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

2.1m questions

2.1m answers

60 comments

57.0k users

...