I've been struggling with converting scaled and centered model coefficients from a glmer model back to uncentered and unscaled values.
I analysed a dataset using GLMM in the lme4 (v1.1.7) package. It involves the calculation of maximum detection range of acoustic receivers and effect of environmental variables.
Sample data:
dd <- structure(list(SUR.ID = c(10186L, 10186L, 10186L, 10186L, 10186L,
10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L,
10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L,
10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L,
10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L,
10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L,
10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L,
10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L,
10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L,
10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L, 10186L,
10186L, 10186L, 10186L, 10249L, 10249L, 10249L, 10249L, 10249L,
10249L, 10249L, 10249L, 10249L, 10249L, 10249L, 10249L, 10249L,
10249L, 10249L, 10249L, 10249L, 10249L, 10249L, 10249L, 10249L,
10249L, 10249L, 10249L, 10249L, 10249L, 10249L, 10249L, 10249L,
10249L, 10249L, 10249L, 10249L, 10249L, 10249L, 10249L, 10249L,
10249L, 10249L, 10249L, 10250L, 10250L, 10250L, 10250L, 10250L,
10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L,
10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L,
10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L,
10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L,
10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L,
10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L,
10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L,
10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L,
10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L, 10250L,
10250L, 10250L, 10250L), Valid.detections = c(1L, 4L, 0L, 1L,
6L, 7L, 0L, 1L, 0L, 0L, 6L, 5L, 3L, 5L, 0L, 0L, 1L, 0L, 0L, 0L,
2L, 3L, 0L, 1L, 5L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 5L, 3L, 1L, 1L,
0L, 0L, 5L, 8L, 0L, 1L, 0L, 0L, 3L, 7L, 1L, 2L, 7L, 0L, 7L, 6L,
0L, 3L, 0L, 1L, 0L, 1L, 2L, 5L, 0L, 3L, 0L, 2L, 1L, 5L, 3L, 0L,
0L, 2L, 0L, 0L, 0L, 0L, 0L, 3L, 4L, 0L, 2L, 2L, 0L, 3L, 0L, 0L,
9L, 8L, 0L, 2L, 9L, 0L, 7L, 4L, 0L, 5L, 0L, 2L, 0L, 1L, 2L, 4L,
3L, 2L, 1L, 1L, 3L, 4L, 1L, 2L, 1L, 3L, 0L, 0L, 0L, 6L, 0L, 5L,
6L, 1L, 3L, 1L, 1L, 0L, 2L, 1L, 6L, 5L, 2L, 1L, 2L, 0L, 1L, 7L,
5L, 4L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 4L, 2L, 6L, 0L, 0L,
0L, 1L, 0L, 0L, 3L, 9L, 0L, 7L, 0L, 2L, 7L, 3L, 0L, 5L, 0L, 1L,
1L, 9L, 2L, 9L, 1L, 0L, 6L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 3L, 13L,
0L, 4L, 1L, 1L, 1L, 2L, 1L, 6L, 0L, 2L, 0L, 0L, 0L, 1L, 1L, 11L,
5L, 0L, 6L, 5L), distance = c(200L, 200L, 200L, 200L, 100L, 100L,
300L, 300L, 400L, 400L, 50L, 50L, 50L, 50L, 300L, 300L, 200L,
200L, 400L, 400L, 200L, 200L, 100L, 100L, 100L, 100L, 300L, 300L,
300L, 300L, 400L, 400L, 50L, 50L, 50L, 50L, 400L, 400L, 100L,
100L, 200L, 200L, 200L, 200L, 100L, 100L, 100L, 100L, 50L, 300L,
50L, 300L, 300L, 300L, 400L, 400L, 400L, 400L, 50L, 50L, 200L,
200L, 200L, 100L, 200L, 100L, 100L, 100L, 300L, 300L, 400L, 400L,
400L, 50L, 400L, 50L, 50L, 300L, 50L, 300L, 200L, 200L, 200L,
200L, 100L, 100L, 100L, 100L, 50L, 300L, 50L, 300L, 300L, 300L,
400L, 400L, 400L, 400L, 50L, 50L, 200L, 200L, 200L, 100L, 200L,
100L, 100L, 100L, 300L, 300L, 400L, 400L, 400L, 50L, 400L, 50L,
50L, 300L, 50L, 300L, 200L, 200L, 200L, 200L, 100L, 100L, 300L,
300L, 400L, 400L, 50L, 50L, 50L, 50L, 300L, 300L, 200L, 200L,
400L, 400L, 200L, 200L, 100L, 100L, 100L, 100L, 300L, 300L, 300L,
300L, 400L, 400L, 50L, 50L, 50L, 50L, 400L, 400L, 100L, 100L,
200L, 200L, 200L, 200L, 100L, 100L, 100L, 100L, 50L, 300L, 50L,
300L, 300L, 300L, 400L, 400L, 400L, 400L, 50L, 50L, 200L, 200L,
200L, 100L, 200L, 100L, 100L, 100L, 300L, 300L, 400L, 400L, 400L,
50L, 400L, 50L, 50L, 300L, 50L, 300L), wind.speed = c(8.9939016,
8.9939016, 8.9939016, 8.9939016, 8.9939016, 8.9939016, 8.9939016,
8.9939016, 8.9939016, 8.9939016, 8.9939016, 8.9939016, 8.9939016,
8.9939016, 8.9939016, 8.9939016, 10.8187512, 10.8187512, 8.9939016,
8.9939016, 10.8187512, 10.8187512, 10.8187512, 10.8187512, 10.8187512,
10.8187512, 10.8187512, 10.8187512, 10.8187512, 10.8187512, 10.8187512,
10.8187512, 10.8187512, 10.8187512, 10.8187512, 10.8187512, 10.8187512,
10.8187512, 8.9939016, 8.9939016, 2.389683519, 2.389683519, 2.389683519,
2.389683519, 2.389683519, 2.389683519, 2.389683519, 2.389683519,
2.389683519, 2.389683519, 2.389683519, 2.389683519, 2.389683519,
2.389683519, 2.389683519, 2.389683519, 2.389683519, 2.389683519,
2.389683519, 2.389683519, 4.779367038, 4.779367038, 4.779367038,
4.779367038, 4.779367038, 4.779367038, 4.779367038, 4.779367038,
4.779367038, 4.779367038, 4.779367038, 4.779367038, 4.779367038,
4.779367038, 4.779367038, 4.779367038, 4.779367038, 4.779367038,
4.779367038, 4.779367038, 2.389683519, 2.389683519, 2.389683519,
2.389683519, 2.389683519, 2.389683519, 2.389683519, 2.389683519,
2.389683519, 2.389683519, 2.389683519, 2.389683519, 2.389683519,
2.389683519, 2.389683519, 2.389683519, 2.389683519, 2.389683519,
2.389683519, 2.389683519, 4.779367038, 4.779367038, 4.779367038,
4.779367038, 4.779367038, 4.779367038, 4.779367038, 4.779367038,
4.779367038, 4.779367038, 4.779367038, 4.779367038, 4.779367038,
4.779367038, 4.779367038, 4.779367038, 4.779367038, 4.779367038,
4.779367038, 4.779367038, 8.9939016, 8.9939016, 8.9939016, 8.9939016,
8.9939016, 8.9939016, 8.9939016, 8.9939016, 8.9939016, 8.9939016,
8.9939016, 8.9939016, 8.9939016, 8.9939016, 8.9939016, 8.9939016,
10.8187512, 10.8187512, 8.9939016, 8.9939016, 10.8187512, 10.8187512,
10.8187512, 10.8187512, 10.8187512, 10.8187512, 10.8187512, 10.8187512,
10.8187512, 10.8187512, 10.8187512, 10.8187512, 10.8187512, 10.8187512,
10.8187512, 10.8187512, 10.8187512, 10.8187512, 8.9939016, 8.9939016,
2.389683519, 2.389683519, 2.389683519, 2.389683519, 2.389683519,
2.389683519, 2.389683519, 2.389683519, 2.389683519, 2.389683519,
2.389683519, 2.389683519, 2.389683519, 2.389683519, 2.389683519,
2.389683519, 2.389683519, 2.389683519, 2.389683519, 2.389683519,
4.779367038, 4.779367038, 4.779367038, 4.779367038, 4.779367038,
4.779367038, 4.779367038, 4.779367038, 4.779367038, 4.779367038,
4.779367038, 4.779367038, 4.779367038, 4.779367038, 4.779367038,
4.779367038, 4.779367038, 4.779367038, 4.779367038, 4.779367038
), receiver.depth = c(0.65, 0.65, 0.69, 0.69, 0.685, 0.685, 0.645,
0.645, 0.645, 0.645, 0.67, 0.67, 0.665, 0.665, 0.705, 0.705,
1.12, 1.12, 0.73, 0.73, 1.155, 1.155, 1.13, 1.13, 1.155, 1.155,
1.105, 1.105, 1.155, 1.155, 1.095, 1.095, 1.145, 1.145, 1.14,
1.14, 1.15, 1.15, 0.65, 0.65, 0.41, 0.41, 0.455, 0.455, 0.405,
0.405, 0.49, 0.49, 0.415, 0.42, 0.415, 0.42, 0.45, 0.45, 0.43,
0.43, 0.45, 0.45, 0.51, 0.51, 1.01, 1.01, 1.095, 1.045, 1.095,
1.045, 1.09, 1.09, 1, 1, 0.975, 0.975, 1.08, 1.055, 1.08, 1.055,
1.085, 1.095, 1.085, 1.095, 0.41, 0.41, 0.455, 0.455, 0.405,
0.405, 0.49, 0.49, 0.415, 0.42, 0.415, 0.42, 0.45, 0.45, 0.43,
0.43, 0.45, 0.45, 0.51, 0.51, 1.01, 1.01, 1.095, 1.045, 1.095,
1.045, 1.09, 1.09, 1, 1, 0.975, 0.975, 1.08, 1.055, 1.08, 1.055,
1.085, 1.095, 1.085, 1.095, 0.65, 0.65, 0.69, 0.69, 0.685, 0.685,
0.645, 0.645, 0.645, 0.645, 0.67, 0.67, 0.665, 0.665, 0.705,
0.705, 1.12, 1.12, 0.73, 0.73, 1.155, 1.155, 1.13, 1.13, 1.155,
1.155, 1.105, 1.105, 1.155, 1.155, 1.095, 1.095, 1.145, 1.145,
1.14, 1.14, 1.15, 1.15, 0.65, 0.65, 0.41, 0.41, 0.455, 0.455,
0.405, 0.405, 0.49, 0.49, 0.415, 0.42, 0.415, 0.42, 0.45, 0.45,
0.43, 0.43, 0.45, 0.45, 0.51, 0.51, 1.01, 1.01, 1.095, 1.045,
1.095, 1.045, 1.09, 1.09, 1, 1, 0.975, 0.975, 1.08, 1.055, 1.08,
1.055, 1.085, 1.095, 1.085, 1.095), water.temperature = c(20.33,
20.33, 20.9, 20.9, 20.72, 20.72, 20.365, 20.365, 20.505, 20.505,
20.445, 20.445, 20.62, 20.62, 20.88, 20.88, 22.775, 22.775, 20.92,
20.92, 22.86, 22.86, 22.755, 22.755, 22.835, 22.835, 22.765,
22.765, 22.86, 22.86, 22.78, 22.78, 22.835, 22.835, 22.78, 22.78,
22.835, 22.835, 20.32, 20.32, 27.925, 27.925, 27.62, 27.62, 27.82,
27.82, 27.58, 27.58, 27.67, 27.98, 27.67, 27.98, 27.63, 27.63,
27.64, 27.64, 27.96, 27.96, 27.52, 27.52, 26.21, 26.21, 25.725,
26.14, 25.725, 26.14, 25.605, 25.605, 26.205, 26.205, 26.255,
26.255, 25.92, 26.07, 25.92, 26.07, 25.525, 25.795, 25.525, 25.795,
27.925, 27.925, 27.62, 27.62, 27.82, 27.82, 27.58, 27.58, 27.67,
27.98, 27.67, 27.98, 27.63, 27.63, 27.64, 27.64, 27.96, 27.96,
27.52, 27.52, 26.21, 26.21, 25.725, 26.14, 25.725, 26.14, 25.605,
25.605, 26.205, 26.205, 26.255, 26.255, 25.92, 26.07, 25.92,
26.07, 25.525, 25.795, 25.525, 25.795, 20.33, 20.33, 20.9, 20.9,
20.72, 20.72, 20.365, 20.365, 20.505, 20.505, 20.445, 20.445,
20.62, 20.62, 20.88, 20.88, 22.775, 22.775, 20.92, 20.92, 22.86,
22.86, 22.755, 22.755, 22.835, 22.835, 22.765, 22.765, 22.86,
22.86, 22.78, 22.78, 22.835, 22.835, 22.78, 22.78, 22.835, 22.835,
20.32, 20.32, 27.925, 27.925, 27.62, 27.62, 27.82, 27.82, 27.58,
27.58, 27.67, 27.98, 27.67, 27.98, 27.63, 27.63, 27.64, 27.64,
27.96, 27.96, 27.52, 27.52, 26.21, 26.21, 25.725, 26.14, 25.725,
26.14, 25.605, 25.605, 26.205, 26.205, 26.255, 26.255, 25.92,
26.07, 25.92, 26.07, 25.525, 25.795, 25.525, 25.795), Habitat = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "Drug Channel", class = "factor"),
Distance = c(-0.078078746, -0.078078746, -0.078078746, -0.078078746,
-0.858866211, -0.858866211, 0.702708718, 0.702708718, 1.483496183,
1.483496183, -1.249259944, -1.249259944, -1.249259944, -1.249259944,
0.702708718, 0.702708718, -0.078078746, -0.078078746, 1.483496183,
1.483496183, -0.078078746, -0.078078746, -0.858866211, -0.858866211,
-0.858866211, -0.858866211, 0.702708718, 0.702708718, 0.702708718,
0.702708718, 1.483496183, 1.483496183, -1.249259944, -1.249259944,
-1.249259944, -1.249259944, 1.483496183, 1.483496183, -0.858866211,
-0.858866211, -0.078078746, -0.078078746, -0.078078746, -0.078078746,
-0.858866211, -0.858866211, -0.858866211, -0.858866211, -1.249259944,
0.702708718, -1.249259944, 0.702708718, 0.702708718, 0.702708718,
1.483496183, 1.483496183, 1.483496183, 1.483496183, -1.249259944,
-1.249259944, -0.078078746, -0.078078746, -0.078078746, -0.858866211,
-0.078078746, -0.858866211, -0.858866211, -0.858866211, 0.702708718,
0.702708718, 1.483496183, 1.483496183, 1.483496183, -1.249259944,
1.483496183, -1.249259944, -1.249259944, 0.702708718, -1.249259944,
0.702708718, -0.078078746, -0.078078746, -0.078078746, -0.078078746,
-0.858866211, -0.858866211, -0.858866211, -0.858866211, -1.249259944,
0.702708718, -1.249259944, 0.702708718, 0.702708718, 0.702708718,
1.483496183, 1.483496183, 1.483496183, 1.483496183, -1.249259944,
-1.249259944, -0.078078746, -0.0