Basically, the general method for smooth transition between two values is the following function:
function transition(value, maximum, start_point, end_point):
return start_point + (end_point - start_point)*value/maximum
That given, you define a function that does the transition for triplets (RGB, HSV etc).
function transition3(value, maximum, (s1, s2, s3), (e1, e2, e3)):
r1= transition(value, maximum, s1, e1)
r2= transition(value, maximum, s2, e2)
r3= transition(value, maximum, s3, e3)
return (r1, r2, r3)
Assuming you have RGB colours for the s and e triplets, you can use the transition3 function as-is. However, going through the HSV colour space produces more "natural" transitions. So, given the conversion functions (stolen shamelessly from the Python colorsys module and converted to pseudocode :):
function rgb_to_hsv(r, g, b):
maxc= max(r, g, b)
minc= min(r, g, b)
v= maxc
if minc == maxc then return (0, 0, v)
diff= maxc - minc
s= diff / maxc
rc= (maxc - r) / diff
gc= (maxc - g) / diff
bc= (maxc - b) / diff
if r == maxc then
h= bc - gc
else if g == maxc then
h= 2.0 + rc - bc
else
h = 4.0 + gc - rc
h = (h / 6.0) % 1.0 //comment: this calculates only the fractional part of h/6
return (h, s, v)
function hsv_to_rgb(h, s, v):
if s == 0.0 then return (v, v, v)
i= int(floor(h*6.0)) //comment: floor() should drop the fractional part
f= (h*6.0) - i
p= v*(1.0 - s)
q= v*(1.0 - s*f)
t= v*(1.0 - s*(1.0 - f))
if i mod 6 == 0 then return v, t, p
if i == 1 then return q, v, p
if i == 2 then return p, v, t
if i == 3 then return p, q, v
if i == 4 then return t, p, v
if i == 5 then return v, p, q
//comment: 0 <= i <= 6, so we never come here
, you can have code as following:
start_triplet= rgb_to_hsv(0, 255, 0) //comment: green converted to HSV
end_triplet= rgb_to_hsv(255, 0, 0) //comment: accordingly for red
maximum= 200
… //comment: value is defined somewhere here
rgb_triplet_to_display= hsv_to_rgb(transition3(value, maximum, start_triplet, end_triplet))