While analyzing the results of a recent question here, I encountered a quite peculiar phenomenon: apparently an extra layer of HotSpot's JIT-optimization actually slows down execution on my machine.
Here is the code I have used for the measurement:
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@BenchmarkMode(Mode.AverageTime)
@OperationsPerInvocation(Measure.ARRAY_SIZE)
@Warmup(iterations = 2, time = 1)
@Measurement(iterations = 5, time = 1)
@State(Scope.Thread)
@Threads(1)
@Fork(2)
public class Measure
{
public static final int ARRAY_SIZE = 1024;
private final int[] array = new int[ARRAY_SIZE];
@Setup public void setup() {
final Random random = new Random();
for (int i = 0; i < ARRAY_SIZE; ++i) {
final int x = random.nextInt();
array[i] = x == 0? 1 : x;
}
}
@GenerateMicroBenchmark public int normalIndex() {
final int[] array = this.array;
int result = 0;
for (int i = 0; i < array.length; i++) {
final int j = i & array.length-1;
final int entry = array[i];
result ^= entry + j;
}
return result;
}
@GenerateMicroBenchmark public int maskedIndex() {
final int[] array = this.array;
int result = 0;
for (int i = 0; i < array.length; i++) {
final int j = i & array.length-1;
final int entry = array[j];
result ^= entry + i;
}
return result;
}
@GenerateMicroBenchmark public int normalWithExitPoint() {
final int[] array = this.array;
int result = 0;
for (int i = 0; i < array.length; i++) {
final int j = i & array.length-1;
final int entry = array[i];
result ^= entry + j;
if (entry == 0) break;
}
return result;
}
@GenerateMicroBenchmark public int maskedWithExitPoint() {
final int[] array = this.array;
int result = 0;
for (int i = 0; i < array.length; i++) {
final int j = i & array.length-1;
final int entry = array[j];
result ^= entry + i;
if (entry == 0) break;
}
return result;
}
}
The code is quite subtle so let me point out the important bits:
- the "normal index" variants use the straight variable
i
for array index. HotSpot can easily determine the range of i
throughout the loop and eliminate the array bounds check;
- the "masked index" variants index by
j
, which is actually equal to i
, but that fact is "hidden" from HotSpot through the AND-masking operation;
- the "with exit point" variants introduce an explict loop exit point. The importance of this will be explained below.
Loop unrolling and reordering
Observe that the bounds check figures in two important ways:
- it has runtime overhead associated with it (a comparison followed by a conditional branch);
- it constitutes a loop exit point which can interrupt the loop on any step. This turns out to have important consequences for the applicable JIT optimizations.
By inspecting the machine code emitted for the above four methods, I have noticed the following:
- in all cases the loop is unrolled;
- in the case of
normalIndex
, which is distinguished as the only one having no premature loop exit points, the operations of all the unrolled steps are reordered such that first all the array fetches are performed, followed by XOR-ing all the values into the accumulator.
Expected and actual measurement results
Now we can classify the four methods according to the discussed features:
normalIndex
has no bounds checks and no loop exit points;
normalWithExitPoint
has no bounds checks and 1 exit point;
maskedIndex
has 1 bounds check and 1 exit point;
maskedWithExitPoint
has 1 bounds check and 2 exit points.
The obvious expectation is that the above list should present the methods in descending order of performance; however, these are my actual results:
Benchmark Mode Samples Mean Mean error Units
normalIndex avgt 20 0.946 0.010 ns/op
normalWithExitPoint avgt 20 0.807 0.010 ns/op
maskedIndex avgt 20 0.803 0.007 ns/op
maskedWithExitPoint avgt 20 1.007 0.009 ns/op
normalWithExitPoint
and maskedIndex
are identical modulo measurement error, even though only the latter has the bounds check;
- the greatest anomaly is observed on
normalIndex
which should have been the fastest, but is significantly slower than normalWithExitPoint
, identical to it in every respect save for having one more line of code, the one which introduces the exit point.
Since normalIndex
is the only method which has the extra reordering "optimization" applied to it, the conclusion is that this is the cause of the slowdown.
I am testing on:
Java HotSpot(TM) 64-Bit Server VM (build 24.0-b56, mixed mode)
(Java 7 Update 40)
- OS X Version 10.9.1
- 2.66 GHz Intel Core i7
I have successfully reproduced the results on Java 8 EA b118 as well.
My question:
Is the above phenomenon reproducible on other, similar machines? From the question mentioned at the beginning I already have a hint that at least some machines do not reproduce it, so another result from the same CPU would be very interesting.
Update 1: more measurements inspired by maaartinus's findings
I have gathered the following table which correlates execution times with the -XX:LoopUnrollLimit
command-line argument. Here I focus only on two variants, with and without the if (entry == 0) break;
line:
LoopUnrollLimit: 14 15 18 19 22 23 60
withExitPoint: 96 95 95 79 80 80 69 1/100 ns
withoutExitPoint: 94 64 64 63 64 77 75 1/100 ns
The following sudden changes can be observed:
on the transition from 14 to 15, the withoutExitPoint
variant receives a beneficial LCM1 transformation and is significantly sped up. Due to the loop-unrolling limit, all loaded values fit into registers;
on 18->19, the withExitPoint
variant receives a speedup, lesser than the above;
on 22->23, the withoutExitPoint
variant is slowed down. At this point I see the spill-over into stack locations, as described in maaartinus's answer, starting to happen.
The default loopUnrollLimit
for my setup is 60, so I present its results in the last column.
1 LCM = Local Code Motion. It is the transformation which causes all array access to happen on the top, followed by the processing of the loaded values.
Update 2: this is actually a known, reported problem
https://bugs.openjdk.java.net/browse/JDK-7101232
Appendix: The unrolled and reordered loop of normalIndex
in machine code
0x00000001044a37c0: mov ecx,eax
0x00000001044a37c2: and ecx,esi ;*iand
; - org.sample.Measure::normalIndex@20 (line 44)
0x00000001044a37c4: mov rbp,QWORD PTR [rsp+0x28] ;*iload_3
; - org.sample.Measure::normalIndex@15 (line 44)
0x00000001044a37c9: add ecx,DWORD PTR [rbp+rsi*4+0x10]
0x00000001044a37cd: xor ecx,r8d
0x00000001044a37d0: mov DWORD PTR [rsp],ecx
0x00000001044a37d3: mov r10d,esi
0x00000001044a37d6: add r10d,0xf
0x00000001044a37da: and r10d,eax
0x00000001044a37dd: mov r8d,esi
0x00000001044a37e0: add r8d,0x7
0x00000001044a37e4: and r8d,eax
0x00000001044a37e7: mov DWORD PTR [rsp+0x4],r8d
0x00000001044a37ec: mov r11d,esi
0x00000001044a37ef: add r11d,0x6
0x00000001044a37f3: and r11d,eax
0x00000001044a37f6: mov DWORD PTR [rsp+0x8],r11d
0x00000001044a37fb: mov r8d,esi
0x00000001044a37fe: add r8d,0x5
0x00000001044a3802: and r8d,eax
0x00000001044a3805: mov DWORD PTR [rsp+0xc],r8d
0x00000001044a380a: mov r11d,esi
0x00000001044a380d: inc r11d
0x00000001044a3810: and r11d,eax
0x00000001044a3813: mov DWORD PTR [rsp+0x10],r11d
0x00000001044a3818: mov r8d,esi
0x00000001044a381b: add r8d,0x2
0x00000001044a381f: and r8d,eax
0x00000001044a3822: mov DWORD PTR [rsp+0x14],r8d
0x00000001044a3827: mov r11d,esi
0x00000001044a382a: add r11d,0x3
0x00000001044a382e: and r11d,eax
0x00000001044a3831: mov r9d,esi
0x00000001044a3834: add r9d,0x4
0x00000001044a3838: and r9d,eax
0x00000001044a383b: mov r8d,esi
0x00000001044a383e: add r8d,0x8
0x00000001044a3842: and r8d,eax
0x00000001044a3845: mov DWORD PTR [rsp+0x18],r8d
0x00000001044a384a: mov r8d,esi
0x00000001044a384d: add r8d,0x9
0x00000001044a3851: and r8d,eax
0x00000001044a3854: mov ebx,esi
0x00000001044a3856: add ebx,0xa
0x00000001044a3859: and ebx,eax
0x00000001044a385b: mov ecx,esi
0x00000001044a385d: add ecx,0xb
0x00000001044a3860: and ecx,eax
0x00000001044a3862: mov edx,esi
0x00000001044a3864: add edx,0xc
0x00000001044a3867: and edx,eax
0x00000001044a3869: mov edi,esi
0x00000001044a386b: add edi,0xd
0x00000001044a386e: and edi,eax
0x00000001044a3870: mov r13d,esi
0x00000001044a3873: add r13d,0xe
0x00000001044a3877: and r13d,eax
0x00000001044a387a: movsxd r14,esi
0x00000001044a387d: add r10d,DWORD PTR [rbp+r14*4+0x4c]
0x00000001044a3882: mov DWORD PTR [rsp+0x24],r10d
0x00000001044a3887: mov QWORD PTR [rsp+0x28],rbp
0x00000001044a388c: mov ebp,DWORD PTR [rsp+0x4]
0x00000001044a3890: mov r10,QWORD PTR [rsp+0x28]
0x00000001044a3895: add ebp,DWORD PTR [r10+r14*4+0x2c]
0x00000001044a389a: mov DWORD PTR [rsp+0x4],ebp
0x00000001044a389e: mov r10d,DWORD PTR [rsp+0x8]
0x00000001044a38a3: mov rbp,QWORD PTR [rsp+0x28]
0x00000001044a38a8: add r10d,DWORD PTR [rbp+r14*4+0x28]
0x00000001044a38ad: mov DWORD PTR [rsp+0x8],r10d
0x00000001044a38b2: mov r10d,DWORD PTR [rsp+0xc]
0x00000001044a38b7: add r10d,DWORD PTR [rbp+r14*4+0x24]
0x00000001044a38bc: mov DWORD PTR [rsp+0xc],r10d
0x00000001044a38c1: mov r10d,DWORD PTR [rsp+0x10]
0x00000001044a38c6: add r10d,DWORD PTR [rbp+r14*4+0x14]
0x00000001044a38cb: mov DWORD PTR [rsp+0x10],r10d
0x00000001044a38d0: mov r10d,DWORD PTR [rsp+0x14]
0x00000001044a38d5: add r10d,DWORD PTR [rbp+r14*4+0x18]
0x00000001044a38da: mov DWORD PTR [rsp+0x14],r10d
0x00000001044a38df: add r13d,DWORD PTR [rbp+r14*4+0x48]
0x00000001044a38e4: add r11d,DWORD PTR [rbp+r14*4+0x1c]
0x00000001044a38e9: add r9d,DWORD PTR [rbp+r14*4+0x20]
0x00000001044a38ee: mov r10d,DWORD PTR [rsp+0x18]
0x00000001044a38f3: add r10d,DWORD PTR [rbp+r14*4+0x30]
0x00000001044a38f8: mov DWORD PTR [rsp+0x18],r10d
0x00000001044a38fd: add r8d,DWORD PTR [rbp+r14*4+0x34]
0x00000001044a3902: add ebx,DWORD PTR [rbp+r14*4+0x38]
0x00000001044a3907: add ecx,DWORD PTR [rbp+r14*4+0x3c]
0x00000001044a390c: add edx,DWORD PTR [rbp+r14*4+0x40]
0x00000001044a3911: add edi,DWORD PTR [rbp+r14*4+0x44]
0x00000