Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
510 views
in Technique[技术] by (71.8m points)

python - Sklearn Label Encoding multiple columns pandas dataframe

I try to encode a number of columns containing categorical data ("Yes" and "No") in a large pandas dataframe. The complete dataframe contains over 400 columns so I look for a way to encode all desired columns without having to encode them one by one. I use Scikit-learn LabelEncoder to encode the categorical data.

The first part of the dataframe does not have to be encoded, however I am looking for a method to encode all the desired columns containing categorical date directly without split and concatenate the dataframe.

To demonstrate my question I first tried to solve it on a small part of the dataframe. However get stuck at the last part where the data is fitted and transformed and get a ValueError: bad input shape (4,3). The code as I ran:

# Create a simple dataframe resembling large dataframe
    data = pd.DataFrame({'A': [1, 2, 3, 4],
                         'B': ["Yes", "No", "Yes", "Yes"],
                         'C': ["Yes", "No", "No", "Yes"],
                         'D': ["No", "Yes", "No", "Yes"]})


# Import required module
from sklearn.preprocessing import LabelEncoder

# Create an object of the label encoder class
labelencoder = LabelEncoder()

# Apply labelencoder object on columns
labelencoder.fit_transform(data.ix[:, 1:])   # First column does not need to be encoded

Complete error report:

labelencoder.fit_transform(data.ix[:, 1:])
Traceback (most recent call last):

  File "<ipython-input-47-b4986a719976>", line 1, in <module>
    labelencoder.fit_transform(data.ix[:, 1:])

  File "C:AnacondaAnaconda3libsite-packagessklearnpreprocessinglabel.py", line 129, in fit_transform
    y = column_or_1d(y, warn=True)

  File "C:AnacondaAnaconda3libsite-packagessklearnutilsvalidation.py", line 562, in column_or_1d
    raise ValueError("bad input shape {0}".format(shape))

ValueError: bad input shape (4, 3)

Does anyone know how to do this?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

As the following code, you can encode the multiple columns by applying LabelEncoder to DataFrame. However, please note that we cannot obtain the classes information for all columns.

import pandas as pd
from sklearn.preprocessing import LabelEncoder

df = pd.DataFrame({'A': [1, 2, 3, 4],
                   'B': ["Yes", "No", "Yes", "Yes"],
                   'C': ["Yes", "No", "No", "Yes"],
                   'D': ["No", "Yes", "No", "Yes"]})
print(df)
#    A    B    C    D
# 0  1  Yes  Yes   No
# 1  2   No   No  Yes
# 2  3  Yes   No   No
# 3  4  Yes  Yes  Yes

# LabelEncoder
le = LabelEncoder()

# apply "le.fit_transform"
df_encoded = df.apply(le.fit_transform)
print(df_encoded)
#    A  B  C  D
# 0  0  1  1  0
# 1  1  0  0  1
# 2  2  1  0  0
# 3  3  1  1  1

# Note: we cannot obtain the classes information for all columns.
print(le.classes_)
# ['No' 'Yes']

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...