Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
414 views
in Technique[技术] by (71.8m points)

python - Numpy matrix power/exponent with modulo?

Is it possible to use numpy's linalg.matrix_power with a modulo so the elements don't grow larger than a certain value?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

In order to prevent overflow, you can use the fact that you get the same result if you first take the modulo of each of your input numbers; in fact:

(M**k) mod p = ([M mod p]**k) mod p,

for a matrix M. This comes from the following two fundamental identities, which are valid for integers x and y:

(x+y) mod p = ([x mod p]+[y mod p]) mod p  # All additions can be done on numbers *modulo p*
(x*y) mod p = ([x mod p]*[y mod p]) mod p  # All multiplications can be done on numbers *modulo p*

The same identities hold for matrices as well, since matrix addition and multiplication can be expressed through scalar addition and multiplication. With this, you only exponentiate small numbers (n mod p is generally much smaller than n) and are much less likely to get overflows. In NumPy, you would therefore simply do

((arr % p)**k) % p

in order to get (arr**k) mod p.

If this is still not enough (i.e., if there is a risk that [n mod p]**k causes overflow despite n mod p being small), you can break up the exponentiation into multiple exponentiations. The fundamental identities above yield

(n**[a+b]) mod p = ([{n mod p}**a mod p] * [{n mod p}**b mod p]) mod p

and

(n**[a*b]) mod p = ([n mod p]**a mod p)**b mod p.

Thus, you can break up power k as a+b+… or a*b*… or any combination thereof. The identities above allow you to perform only exponentiations of small numbers by small numbers, which greatly lowers the risk of integer overflows.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...