This happens because generics are invariant. Even if String
is a Comparable
, meaning:
String s = "";
Comparable c = s; // would work
Generics of these would not work:
List<Comparable> listC = List.of();
List<String> listS = List.of();
listC = listS; // will fail
And this would not work no matter what is the relationship between Comparable
and String
.
When you change the definition of that method to:
public static boolean func(List<? extends Comparable> lst) {
...
}
This is said that: wildcard with an extends-bound makes the type covariant.
This means that :
List<? extends Comparable> listC = List.of();
List<String> listS = List.of();
listC = listS; // would work here
Or in simpler words it means that List<String>
is a subtype of List<? extends Comparable>
.
There is a small price to pay now, because listC
is now a producer of elements, meaning you can take elements out of it, but you can not put anything into it.
And well after you understand this, you are not done yet, because the definition of that method would be entirely correct, when written like this:
public static <T extends Comparable<? super T>> boolean func(List<T> lst) {
.....
}
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…