I'm looking for the most efficient way to calculate the minimum number of bytes needed to store an integer without losing precision.
e.g.
int: 10 = 1 byte
int: 257 = 2 bytes;
int: 18446744073709551615 (UINT64_MAX) = 8 bytes;
Thanks
P.S. This is for a hash functions which will be called many millions of times
Also the byte sizes don't have to be a power of two
The fastest solution seems to one based on tronics answer:
int bytes;
if (hash <= UINT32_MAX)
{
if (hash < 16777216U)
{
if (hash <= UINT16_MAX)
{
if (hash <= UINT8_MAX) bytes = 1;
else bytes = 2;
}
else bytes = 3;
}
else bytes = 4;
}
else if (hash <= UINT64_MAX)
{
if (hash < 72057594000000000ULL)
{
if (hash < 281474976710656ULL)
{
if (hash < 1099511627776ULL) bytes = 5;
else bytes = 6;
}
else bytes = 7;
}
else bytes = 8;
}
The speed difference using mostly 56 bit vals was minimal (but measurable) compared to Thomas Pornin answer. Also i didn't test the solution using __builtin_clzl which could be comparable.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…