Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
357 views
in Technique[技术] by (71.8m points)

python - pandas DataFrame concat / update ("upsert")?

I am looking for an elegant way to append all the rows from one DataFrame to another DataFrame (both DataFrames having the same index and column structure), but in cases where the same index value appears in both DataFrames, use the row from the second data frame.

So, for example, if I start with:

df1:
                    A      B
    date
    '2015-10-01'  'A1'   'B1'
    '2015-10-02'  'A2'   'B2'
    '2015-10-03'  'A3'   'B3'

df2:
    date            A      B
    '2015-10-02'  'a1'   'b1'
    '2015-10-03'  'a2'   'b2'
    '2015-10-04'  'a3'   'b3'

I would like the result to be:

                    A      B
    date
    '2015-10-01'  'A1'   'B1'
    '2015-10-02'  'a1'   'b1'
    '2015-10-03'  'a2'   'b2'
    '2015-10-04'  'a3'   'b3'

This is analogous to what I think is called "upsert" in some SQL systems --- a combination of update and insert, in the sense that each row from df2 is either (a) used to update an existing row in df1 if the row key already exists in df1, or (b) inserted into df1 at the end if the row key does not already exist.

I have come up with the following

pd.concat([df1, df2])     # concat the two DataFrames
    .reset_index()        # turn 'date' into a regular column
    .groupby('date')      # group rows by values in the 'date' column
    .tail(1)              # take the last row in each group
    .set_index('date')    # restore 'date' as the index

which seems to work, but this relies on the order of the rows in each groupby group always being the same as the original DataFrames, which I haven't checked on, and seems displeasingly convoluted.

Does anyone have any ideas for a more straightforward solution?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

One solution is to conatenate df1 with new rows in df2 (i.e. where the index does not match). Then update the values with those from df2.

df = pd.concat([df1, df2[~df2.index.isin(df1.index)]])
df.update(df2)

>>> df
             A   B
2015-10-01  A1  B1
2015-10-02  a1  b1
2015-10-03  a2  b2
2015-10-04  a3  b3

EDIT: Per the suggestion of @chrisb, this can further be simplified as follows:

pd.concat([df1[~df1.index.isin(df2.index)], df2])

Thanks Chris!


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...