Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
173 views
in Technique[技术] by (71.8m points)

java - Can someone make sense of the G1 garbage collector output?

I am running a Java program with the G1 garbage collector using the following options:

-XX:-UseBiasedLocking 
-XX:+UnlockExperimentalVMOptions 
-XX:+UseG1GC     
-verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:/var/tmp/gclog.out

The output looks like this...

44900.297: [GC pause (young)44900.386 (initial-mark), 0.08894851 secs]
: [GC concurrent-mark-start]
   [Parallel Time:  83.7 ms]
      [GC Worker Start Time (ms):  44900297.6  44900297.6  44900297.6  44900297.6  44900297.6  44900297.7  44900297.7  44900297.7  44900297.7  44900297.7  44900297.7  44900297.7  44900297.7
       Avg: 44900297.7, Min: 44900297.6, Max: 44900297.7, Diff:   0.1]
      [Update RS (ms):  23.5  24.3  25.0  25.0  23.9  24.4  25.2  24.1  25.7  24.7  24.8  24.4  24.7
       Avg:  24.6, Min:  23.5, Max:  25.7, Diff:   2.1]
         [Processed Buffers : 16 19 19 23 20 24 18 18 18 17 20 16 19
          Sum: 247, Avg: 19, Min: 16, Max: 24, Diff: 8]
      [Ext Root Scanning (ms):  2.2  2.7  2.2  2.6  3.0  3.1  2.2  1.1  2.3  3.0  2.2  2.4  2.9
       Avg:   2.4, Min:   1.1, Max:   3.1, Diff:   2.0]
      [Mark Stack Scanning (ms):  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
       Avg:   0.0, Min:   0.0, Max:   0.0, Diff:   0.0]
      [Scan RS (ms):  14.1  14.6  14.5  14.3  14.6  14.2  14.4  14.5  14.0  13.9  14.6  14.5  14.0
       Avg:  14.3, Min:  13.9, Max:  14.6, Diff:   0.8]
      [Object Copy (ms):  41.4  39.5  39.4  39.0  39.6  39.5  39.1  41.4  39.0  39.3  39.3  39.8  39.5
       Avg:  39.7, Min:  39.0, Max:  41.4, Diff:   2.4]
      [Termination (ms):  1.3  1.4  1.5  1.6  1.5  1.4  1.6  1.4  1.5  1.7  1.5  1.4  1.3
       Avg:   1.5, Min:   1.3, Max:   1.7, Diff:   0.4]
         [Termination Attempts : 1185 1205 1219 1436 1171 1231 1471 1237 1461 1526 1353 1259 1170
          Sum: 16924, Avg: 1301, Min: 1170, Max: 1526, Diff: 356]
      [GC Worker End Time (ms):  44900380.2  44900380.2  44900380.2  44900380.2  44900380.2  44900380.3  44900380.2  44900380.2  44900380.2  44900380.2  44900380.2  44900380.2  44900380.2
       Avg: 44900380.2, Min: 44900380.2, Max: 44900380.3, Diff:   0.1]
      [GC Worker Times (ms):  82.6  82.6  82.6  82.6  82.6  82.6  82.5  82.6  82.5  82.5  82.5  82.5  82.5
       Avg:  82.6, Min:  82.5, Max:  82.6, Diff:   0.1]
      [Other:   1.2 ms]
   [Clear CT:   0.5 ms]
   [Other:   4.8 ms]
      [Choose CSet:   0.0 ms]
   [ 1331M->830M(1840M)]
 [Times: user=1.07 sys=0.01, real=0.09 secs]
44901.205: [GC concurrent-mark-end, 0.8186002 sec]
44901.205: [GC remark, 0.0258621 secs]
 [Times: user=0.02 sys=0.00, real=0.03 secs]
44901.231: [GC concurrent-count-start]
44901.479: [GC concurrent-count-end, 0.2478477]
44901.479: [GC cleanup 940M->931M(1840M), 0.0073079 secs]

Can anyone make sense of what is going on?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Disclaimer

I am in no way well versed on the Garbage-First Garbage Collector and this question inspired me to check it out for the first time. There is a chance I may be wrong with some of my information.

Intro

To get more information about the Garbage-First Garbage Collector (G1GC), the Garbage-First Garbage Collection paper (here, here, here and here) is an invaluable resource. You can find an introduction to the G1GC here. The HotSpot Glossary comes in handy to understand JVM terms. The following papers were also helpful in further understanding Garbage Collection:

  • A Hard Look at Hard Real-Time Garbage Collection: here and here
  • Non-Blocking Garbage Collection for Multiprocessors: here and here
  • Non-blocking Root Scanning for Real-Time Garbage Collection: here
  • Non-blocking Object Copy for Real-Time Garbage Collection: here and here

With these resources and an OpenJDK 7 debug build, you can start to understand the G1GC log.

Definitions

Using the papers and web pages referenced above, here are some useful definitions of terms that came up most often:

  • concurrent marking: Both provides collection ”completeness” and identifies regions ripe for reclamation via compacting evacuation. Provides collector completeness without imposing any order on region choice for collection sets. Provides the live data information that allows regions to be collected in “garbage-first” order.
  • heap: The area of memory used by the JVM for dynamic memory allocation.
  • heap region: The heap is partitioned into a set of equal-sized heap regions. The Garbage-First heap is divided into equal-sized heap regions, each a contiguous range of virtual memory.
  • marking bitmap: Contains one bit for each address that can be the start of an object.
  • remembered set: A data structure that indicates heap locations outside the region that may contain pointers to objects in the region. Each region has an associated remembered set, which indicates all locations that might contain pointers to (live) objects within the region. Garbage-First remembered sets record pointers from all regions (with some exceptions). A current buffer or sequence of modified cards. A data structure that records pointers between generations.
  • root set: A set of objects which is known to be directly accessible. The locations from which all live objects are reachable.

Source Code

To understand the G1GC log better, I used the following OpenJDK 7 source files:

  • hotspot/src/share/vm/gc_implementation/g1/concurrentMarkThread.cpp
  • hotspot/src/share/vm/gc_implementation/g1/concurrentMark.cpp
  • hotspot/src/share/vm/gc_implementation/g1/concurrentMark.hpp
  • hotspot/src/share/vm/gc_implementation/g1/g1_specialized_oop_closures.hpp
  • hotspot/src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp
  • hotspot/src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp
  • hotspot/src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp
  • hotspot/src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp
  • hotspot/src/share/vm/gc_implementation/g1/g1OopClosures.hpp
  • hotspot/src/share/vm/gc_implementation/g1/g1OopClosures.inline.hpp
  • hotspot/src/share/vm/gc_implementation/g1/g1RemSet.cpp
  • hotspot/src/share/vm/memory/sharedHeap.cpp
  • hotspot/src/share/vm/memory/sharedHeap.hpp
  • hotspot/src/share/vm/utilities/taskqueue.hpp
  • hotspot/src/share/vm/runtime/timer.cpp
  • hotspot/src/share/vm/runtime/timer.hpp
  • hotspot/src/share/vm/gc_implementation/g1/vm_operations_g1.cpp
  • hotspot/src/share/vm/gc_implementation/g1/vm_operations_g1.hpp

Log Analysis

Below is an annotated copy of the G1GC log in question.

44900.297: [GC pause (young) (initial-mark), 0.08894851 secs]
^^^^^^^^^^^ Elapsed seconds from JVM start
           ^^^^^^^^^ Collection pause at safe-point
                    ^^^^^^^^ In full young GC mode
                            ^^^^^^^^^^^^^^^ Last pause included initial mark
                                           ^^^^^^^^^^^^^^^^^^ Elapsed seconds in method
44900.386: [GC concurrent-mark-start]
^^^^^^^^^^^ Elapsed seconds from JVM start
           ^^^^^^^^^^^^^^^^^^^^^^^^^^ Concurrent mark thread started
   [Parallel Time:  83.7 ms]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Elapsed milliseconds for all GC worker threads to finish
      [GC Worker Start Time (ms):  44900297.6  44900297.6  44900297.6  44900297.6  44900297.6  44900297.7  44900297.7  44900297.7  44900297.7  44900297.7  44900297.7  44900297.7  44900297.7
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^... Elapsed seconds from JVM start that GC worker threads were started
       Avg: 44900297.7, Min: 44900297.6, Max: 44900297.7, Diff:   0.1]
^^^^^^^^^^^^^^^^^^^^^^ Average GC worker thread start time (elapsed seconds from JVM start)
                      ^^^^^^^^^^^^^^^^^ Minimum GC worker thread start time (elapsed seconds from JVM start)
                                       ^^^^^^^^^^^^^^^^^ Maximum GC worker thread start time (elapsed seconds from JVM start)
                                                        ^^^^^^^^^^^^^^ Total seconds to start all GC worker threads
      [Update RS (ms):  23.5  24.3  25.0  25.0  23.9  24.4  25.2  24.1  25.7  24.7  24.8  24.4  24.7
^^^^^^^^^^^^^^^^^^^^^^^^... Elapsed milliseconds for each GC worker thread to update cards in remembered sets during an evacuation pause
       Avg:  24.6, Min:  23.5, Max:  25.7, Diff:   2.1]
^^^^^^^^^^^^^^^^^ Average GC worker thread milliseconds to update RS
                 ^^^^^^^^^^^^ Minimum GC worker thread milliseconds to update RS
                             ^^^^^^^^^^^^ Maximum GC worker thread milliseconds to update RS
                                         ^^^^^^^^^^^^^^ Minimum/maximum delta of GC worker thread milliseconds to update RS
         [Processed Buffers : 16 19 19 23 20 24 18 18 18 17 20 16 19
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^... Total remembered set buffers processed by each GC worker thread
          Sum: 247, Avg: 19, Min: 16, Max: 24, Diff: 8]
^^^^^^^^^^... Summary information for total remembered set buffers processed by all GC worker thread
      [Ext Root Scanning (ms):  2.2  2.7  2.2  2.6  3.0  3.1  2.2  1.1  2.3  3.0  2.2  2.4  2.9
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^... Elapsed milliseconds for each GC worker thread to process heap roots during an evacuation pause
       Avg:   2.4, Min:   1.1, Max:   3.1, Diff:   2.0]
^^^^^^^... Summary information for total elapsed milliseconds for all GC worker thread to process heap roots during an evacuation pause
      [Mark Stack Scanning (ms):  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^... Elapsed milliseconds for each GC worker thread to scan strong roots in the mark stack during an evacuation pause
       Avg:   0.0, Min:   0.0, Max:   0.0, Diff:   0.0]
^^^^^^^... Summary information for total milliseconds for all GC worker thread to scan strong roots in the mark stack during an evacuation pause
      [Scan RS (ms):  14.1  14.6  14.5  14.3  14.6  14.2  14.4  14.5  14.0  13.9  14.6  14.5  14.0
^^^^^^^^^^^^^^^^^^^^^^... Elapsed milliseconds for each GC worker thread to scan for dirty cards in a heap region to update the remembered set
       Avg:  14.3, Min:  13.9, Max:  14.6, Diff:   0.8]
^^^^^^^^^^^^^... Summary information for total elapsed milliseconds for all GC worker thread to scan for dirty cards in a heap region to update the remembered set
      [Object Copy (ms):  41.4  39.5  39.4  39.0  39.6  39.5  39.1  41.4  39.0  39.3  39.3  39.8  39.5
^^^^^^^^^^^^^^^^^^^^^^^^^^... Elapsed milliseconds for each GC worker thread to scan root sets for pointers to include in this heap region's remembered set during an evacuation pause
       Avg:  39.7, Min:  39.0, Max:  41.4, Diff:   2.4]
^^^^^^^^^^^^^... Summary information for total elapsed milliseconds for all GC worker thread to scan root sets for pointers to include in this heap region's remembered set during an evacuation pause
      [Termination (ms):  1.3  1.4  1.5  1.6  1.5  1.4  1.6  1.4  1.5  1.7  1.5  1.4  1.3
^^^^^^^^^^^^^^^^^^^^^^^^^^... Elapsed milliseconds for each GC worker thread to terminate scanning root sets for pointers to include in this heap region's remembered set during an evacuation pause
       Avg:   1.5, Min:   1.3, Max:   1.7, Diff:   0.4]
^^^^^^^^^^^^^^... Summary information for total elapsed milliseconds for all GC worker thread to terminate scanning root sets for pointers to include in this heap region's remembered set during an evacuation pause
         [Termination Attempts : 1185 1205 1219 1436 1171 1231 1471 1237 1461 1526 1353 1259 1170
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^... Total attempts for each GC worker thread to terminate scanning root sets for pointers to include in this heap region's remembered set during an evacuation pause
          Sum: 16924, Avg: 1301, Min: 1170, Max: 1526, Diff: 356]
^^^^^^^^^^^^^^^... Summary information for total attempts for all GC worker thread to terminate scanning root sets for pointers to include in this heap region's remembered se

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...