Request / answer schemes tends to be inefficient, and it shows up quickly on serial port. If you are interested in throughtput, look at windowed protocol, like kermit file sending protocol.
Now if you want to stick with your protocol and reduce latency, select, poll, read will all give you roughly the same latency, because as Andy Ross indicated, the real latency is in the hardware fifo handling.
If you are lucky, you can tweak the driver behaviour without patching, but you still need to look at the driver code. However, having the ARM handle a 10 kHz interrupt rate will certainly not be good for the overall system performance...
Another options is to pad your packet so that you hit the fifo threshold every time. It will also confirm that if it is or not a fifo threshold problem.
10 msec @ 115200 is enough to transmit 100 bytes (assuming 8N1), so what you are seeing is probably because the low_latency flag is not set. Try
setserial /dev/<tty_name> low_latency
It will set the low_latency flag, which is used y the kernel when moving data up in the tty layer :
void tty_flip_buffer_push(struct tty_struct *tty)
{
unsigned long flags;
spin_lock_irqsave(&tty->buf.lock, flags);
if (tty->buf.tail != NULL)
tty->buf.tail->commit = tty->buf.tail->used;
spin_unlock_irqrestore(&tty->buf.lock, flags);
if (tty->low_latency)
flush_to_ldisc(&tty->buf.work);
else
schedule_work(&tty->buf.work);
}
The schedule_work call might be responsible for the 10 msec latency you observe.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…