Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
822 views
in Technique[技术] by (71.8m points)

scala - DataFrame equality in Apache Spark

Assume df1 and df2 are two DataFrames in Apache Spark, computed using two different mechanisms, e.g., Spark SQL vs. the Scala/Java/Python API.

Is there an idiomatic way to determine whether the two data frames are equivalent (equal, isomorphic), where equivalence is determined by the data (column names and column values for each row) being identical save for the ordering of rows & columns?

The motivation for the question is that there are often many ways to compute some big data result, each with its own trade-offs. As one explores these trade-offs, it is important to maintain correctness and hence the need to check for the equivalence/equality on a meaningful test data set.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Scala (see below for PySpark)

The spark-fast-tests library has two methods for making DataFrame comparisons (I'm the creator of the library):

The assertSmallDataFrameEquality method collects DataFrames on the driver node and makes the comparison

def assertSmallDataFrameEquality(actualDF: DataFrame, expectedDF: DataFrame): Unit = {
  if (!actualDF.schema.equals(expectedDF.schema)) {
    throw new DataFrameSchemaMismatch(schemaMismatchMessage(actualDF, expectedDF))
  }
  if (!actualDF.collect().sameElements(expectedDF.collect())) {
    throw new DataFrameContentMismatch(contentMismatchMessage(actualDF, expectedDF))
  }
}

The assertLargeDataFrameEquality method compares DataFrames spread on multiple machines (the code is basically copied from spark-testing-base)

def assertLargeDataFrameEquality(actualDF: DataFrame, expectedDF: DataFrame): Unit = {
  if (!actualDF.schema.equals(expectedDF.schema)) {
    throw new DataFrameSchemaMismatch(schemaMismatchMessage(actualDF, expectedDF))
  }
  try {
    actualDF.rdd.cache
    expectedDF.rdd.cache

    val actualCount = actualDF.rdd.count
    val expectedCount = expectedDF.rdd.count
    if (actualCount != expectedCount) {
      throw new DataFrameContentMismatch(countMismatchMessage(actualCount, expectedCount))
    }

    val expectedIndexValue = zipWithIndex(actualDF.rdd)
    val resultIndexValue = zipWithIndex(expectedDF.rdd)

    val unequalRDD = expectedIndexValue
      .join(resultIndexValue)
      .filter {
        case (idx, (r1, r2)) =>
          !(r1.equals(r2) || RowComparer.areRowsEqual(r1, r2, 0.0))
      }

    val maxUnequalRowsToShow = 10
    assertEmpty(unequalRDD.take(maxUnequalRowsToShow))

  } finally {
    actualDF.rdd.unpersist()
    expectedDF.rdd.unpersist()
  }
}

assertSmallDataFrameEquality is faster for small DataFrame comparisons and I've found it sufficient for my test suites.

PySpark

Here's a simple function that returns true if the DataFrames are equal:

def are_dfs_equal(df1, df2):
    if df1.schema != df2.schema:
        return False
    if df1.collect() != df2.collect():
        return False
    return True

You'll typically perform DataFrame equality comparisons in a test suite and will want a descriptive error message when the comparisons fail (a True / False return value doesn't help much when debugging).

Use the chispa library to access the assert_df_equality method that returns descriptive error messages for test suite workflows.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...