Chapter 5 of the Python NLTK book gives this example of tagging words in a sentence:
>>> text = nltk.word_tokenize("And now for something completely different")
>>> nltk.pos_tag(text)
[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'), ('completely', 'RB'), ('different', 'JJ')]
nltk.pos_tag calls the default tagger, which uses a full set of tags. Later in the chapter a simplified set of tags is introduced.
How can I tag sentences with this simplified set of part-of-speech tags?
Also have I understood the tagger correctly, i.e. can I change the tag set that the tagger uses as I'm asking, or should I map the tags it returns on to the simplified set, or should I create a new tagger from a new, simply-tagged corpus?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…