Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
221 views
in Technique[技术] by (71.8m points)

python - Creating a Pandas DataFrame with a numpy array containing multiple types

I want to create a pandas dataframe with default values of zero, but one column of integers and the other of floats. I am able to create a numpy array with the correct types, see the values variable below. However, when I pass that into the dataframe constructor, it only returns NaN values (see df below). I have include the untyped code that returns an array of floats(see df2)

import pandas as pd
import numpy as np

values = np.zeros((2,3), dtype='int32,float32')
index = ['x', 'y']
columns = ['a','b','c']

df = pd.DataFrame(data=values, index=index, columns=columns)
df.values.dtype

values2 = np.zeros((2,3))
df2 = pd.DataFrame(data=values2, index=index, columns=columns)
df2.values.dtype

Any suggestions on how to construct the dataframe?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Here are a few options you could choose from:

import numpy as np
import pandas as pd

index = ['x', 'y']
columns = ['a','b','c']

# Option 1: Set the column names in the structured array's dtype 
dtype = [('a','int32'), ('b','float32'), ('c','float32')]
values = np.zeros(2, dtype=dtype)
df = pd.DataFrame(values, index=index)

# Option 2: Alter the structured array's column names after it has been created
values = np.zeros(2, dtype='int32, float32, float32')
values.dtype.names = columns
df2 = pd.DataFrame(values, index=index, columns=columns)

# Option 3: Alter the DataFrame's column names after it has been created
values = np.zeros(2, dtype='int32, float32, float32')
df3 = pd.DataFrame(values, index=index)
df3.columns = columns

# Option 4: Use a dict of arrays, each of the right dtype:
df4 = pd.DataFrame(
    {'a': np.zeros(2, dtype='int32'),
     'b': np.zeros(2, dtype='float32'),
     'c': np.zeros(2, dtype='float32')}, index=index, columns=columns)

# Option 5: Concatenate DataFrames of the simple dtypes:
df5 = pd.concat([
    pd.DataFrame(np.zeros((2,), dtype='int32'), columns=['a']), 
    pd.DataFrame(np.zeros((2,2), dtype='float32'), columns=['b','c'])], axis=1)

# Option 6: Alter the dtypes after the DataFrame has been formed. (This is not very efficient)
values2 = np.zeros((2, 3))
df6 = pd.DataFrame(values2, index=index, columns=columns)
for col, dtype in zip(df6.columns, 'int32 float32 float32'.split()):
    df6[col] = df6[col].astype(dtype)

Each of the options above produce the same result

   a  b  c
x  0  0  0
y  0  0  0

with dtypes:

a      int32
b    float32
c    float32
dtype: object

Why pd.DataFrame(values, index=index, columns=columns) produces a DataFrame with NaNs:

values is a structured array with column names f0, f1, f2:

In [171]:  values
Out[172]: 
array([(0, 0.0, 0.0), (0, 0.0, 0.0)], 
      dtype=[('f0', '<i4'), ('f1', '<f4'), ('f2', '<f4')])

If you pass the argument columns=['a', 'b', 'c'] to pd.DataFrame, then Pandas will look for columns with those names in the structured array values. When those columns are not found, Pandas places NaNs in the DataFrame to represent missing values.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...