Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.2k views
in Technique[技术] by (71.8m points)

pandas - JOIN two dataframes on common column in python

I have a dataframe df:

id   name   count
1    a       10
2    b       20
3    c       30
4    d       40
5    e       50

Here I have another dataframe df2:

id1  price   rating
 1     100     1.0
 2     200     2.0
 3     300     3.0
 5     500     5.0

I want to join these two dataframes on column id and id1(both refer same). Here is an example of df3:

id   name   count   price   rating
1    a       10      100      1.0
2    b       20      200      2.0
3    c       30      300      3.0
4    d       40      Nan      Nan
5    e       50      500      5.0

Should I use df.merge or pd.concat?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Use merge:

print (pd.merge(df1, df2, left_on='id', right_on='id1', how='left').drop('id1', axis=1))
   id name  count  price  rating
0   1    a     10  100.0     1.0
1   2    b     20  200.0     2.0
2   3    c     30  300.0     3.0
3   4    d     40    NaN     NaN
4   5    e     50  500.0     5.0

Another solution is simple rename column:

print (pd.merge(df1, df2.rename(columns={'id1':'id'}), on='id',  how='left'))
   id name  count  price  rating
0   1    a     10  100.0     1.0
1   2    b     20  200.0     2.0
2   3    c     30  300.0     3.0
3   4    d     40    NaN     NaN
4   5    e     50  500.0     5.0

If need only column price the simpliest is map:

df1['price'] = df1.id.map(df2.set_index('id1')['price'])
print (df1)
   id name  count  price
0   1    a     10  100.0
1   2    b     20  200.0
2   3    c     30  300.0
3   4    d     40    NaN
4   5    e     50  500.0

Another 2 solutions:

print (pd.merge(df1, df2, left_on='id', right_on='id1', how='left')
         .drop(['id1', 'rating'], axis=1))
   id name  count  price
0   1    a     10  100.0
1   2    b     20  200.0
2   3    c     30  300.0
3   4    d     40    NaN
4   5    e     50  500.0

print (pd.merge(df1, df2[['id1','price']], left_on='id', right_on='id1', how='left')
         .drop('id1', axis=1))
   id name  count  price
0   1    a     10  100.0
1   2    b     20  200.0
2   3    c     30  300.0
3   4    d     40    NaN
4   5    e     50  500.0

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

2.1m questions

2.1m answers

60 comments

57.0k users

...