Here are the steps needed to achieve precise control over relative scales of graphics objects.
To achieve consistent scale one needs to explicitly specify input coordinate range (regular coordinates) and output coordinate range (absolute coordinates). Regular coordinate range depends on PlotRange
, PlotRangePadding
(and possibly others options?). Absolute coordinate range depends on ImageSize
,ImagePadding
(and possibly other options?). For GraphPlot
, it is sufficient to specify PlotRange
and ImageSize
.
To create Graphics object that renders at a pre-determined scale, you need to figure out PlotRange
needed to fully include the object, corresponding ImageSize
and return Graphics
object with these settings specified. To figure out the necessary PlotRange
when thick lines are involved it is easier to deal with AbsoluteThickness
, call it abs
. To fully include those lines you could take the smallest PlotRange
that includes endpoints, then offset minimum x and maximum y boundaries by abs/2, and offset maximum x and minimum y boundaries by (abs/2+1). Note that these are output coordinates.
When combining several scale-calibrated
Graphics objects you need to recalculate PlotRange/ImageSize
and set them explicitly for the combined Graphics object.
To Inset scale-calibrated
objects into GraphPlot
you need to make sure that coordinates used for automatic GraphPlot
positioning are in the same range. For that, you could pick several corner nodes, fix their positions manually, and let automatic positioning do the rest.
Primitives Line
/JoinedCurve
/FilledCurve
render joins/caps differently depending on whether the line is (almost) collinear, so one needs to manually detect collinearity.
Using this approach, rendered images should have width equal to
(inputPlotRange*scale + 1) + lineThickness*scale + 1
First extra 1
is to avoid the "fencepost error" and second extra 1 is the extra pixel needed to add on the right to make sure thick lines are not cut-off
I've verified this formula by doing Rasterize
on combined Show
and rasterizing a 3D plot with objects mapped using Texture
and viewed with Orthographic
projection and it matches the predicted result. Doing 'Copy/Paste' on objects Inset
into GraphPlot
, and then Rasterizing, I get an image that's one pixel thinner than predicted.
(source: yaroslavvb.com)
(**** Note, this uses JoinedCurve and Texture which are Mathematica 8 primitives.
In Mathematica 7, JoinedCurve is not needed and can be removed *)
(** Global variables **)
scale = 50;
lineThickness = 1/2; (* line thickness in regular coordinates *)
(** Global utilities **)
(* test if 3 points are collinear, needed to work around difference
in how colinear Line endpoints are rendered *)
collinear[points_] :=
Length[points] == 3 && (Det[Transpose[points]~Append~{1, 1, 1}] == 0)
(* tales list of point coordinates, returns plotRange bounding box,
uses global "scale" and "lineThickness" to get bounding box *)
getPlotRange[lst_] := (
{xs, ys} = Transpose[lst];
(* two extra 1/
scale offsets needed for exact match *)
{{Min[xs] -
lineThickness/2,
Max[xs] + lineThickness/2 + 1/scale}, {Min[ys] -
lineThickness/2 - 1/scale, Max[ys] + lineThickness/2}}
);
(* Gets image size for given plot range *)
getImageSize[{{xmin_, xmax_}, {ymin_, ymax_}}] := (
imsize = scale*{xmax - xmin, ymax - ymin} + {1, 1}
);
(* converts plot range to vertices of rectangle *)
pr2verts[{{xmin_, xmax_}, {ymin_, ymax_}}] := {{xmin, ymin}, {xmax,
ymin}, {xmax, ymax}, {xmin, ymax}};
(* lifts two dimensional coordinates into 3d *)
lift[h_, coords_] := Append[#, h] & /@ coords
(* convert Raster object to array specification of texture *)
raster2texture[raster_] := Reverse[raster[[1, 1]]/255]
Subset[a_, b_] := (a [Intersection] b == a);
inducedGraph[set_] := Select[edges, # [Subset] set &];
values[dict_] := Map[#[[-1]] &, DownValues[dict]];
(** Graph Specific Stuff *)
graphName = {"Grid", {3, 3}};
verts = Range[GraphData[graphName, "VertexCount"]];
edges = GraphData[graphName, "EdgeIndices"];
vcoords = Thread[verts -> GraphData[graphName, "VertexCoordinates"]];
jedges = {{{1, 2, 4}, {2, 4, 5, 6}}, {{2, 3, 6}, {2, 4, 5, 6}}, {{4,
5, 6}, {2, 4, 5, 6}}, {{4, 5, 6}, {4, 5, 6, 8}}, {{4, 7, 8}, {4,
5, 6, 8}}, {{6, 8, 9}, {4, 5, 6, 8}}};
jnodes = Union[Flatten[jedges, 1]];
(* Generate diagram with explicit PlotRange,ImageSize and
AbsoluteThickness *)
plotHL[verts_, color_] := (
coords = verts /. vcoords;
obj = JoinedCurve[Line[coords],
CurveClosed -> Not[collinear[coords]]];
(* Figure out PlotRange and ImageSize needed to respect scale *)
pr = getPlotRange[verts /. vcoords];
{{xmin, xmax}, {ymin, ymax}} = pr;
imsize = scale*{xmax - xmin, ymax - ymin};
lineForm = {Opacity[.3], color, JoinForm["Round"],
CapForm["Round"], AbsoluteThickness[scale*lineThickness]};
g = Graphics[{Directive[lineForm], obj}];
gg = GraphPlot[Rule @@@ inducedGraph[verts],
VertexCoordinateRules -> vcoords];
Show[g, gg, PlotRange -> pr, ImageSize -> imsize]
);
(* Initialize all graph plot images *)
SeedRandom[1]; colors =
RandomChoice[ColorData["WebSafe", "ColorList"], Length[jnodes]];
Clear[bags];
MapThread[(bags[#1] = plotHL[#1, #2]) &, {jnodes, colors}];
(** Ploting parent graph of subgraphs **)
(* figure out coordinates of subgraphs close to edges of bounding
box, use them to anchor parent GraphPlot *)
bagCentroid[bag_] := Mean[bag /. vcoords];
findExtremeBag[vec_] := (vertList = First /@ vcoords;
coordList = Last /@ vcoords;
extremePos =
First[Ordering[jnodes, 1,
bagCentroid[#1].vec > bagCentroid[#2].vec &]];
jnodes[[extremePos]]);
extremeDirs = {{1, 1}, {1, -1}, {-1, 1}, {-1, -1}};
extremeBags = findExtremeBag /@ extremeDirs;
extremePoses = bagCentroid /@ extremeBags;
(* figure out new plot range needed to contain all objects *)
fullPR = getPlotRange[verts /. vcoords];
fullIS = getImageSize[fullPR];
(*** Show bags together merged ***)
image1 =
Show[values[bags], PlotRange -> fullPR, ImageSize -> fullIS]
(*** Show bags as vertices of another GraphPlot ***)
GraphPlot[
Rule @@@ jedges,
EdgeRenderingFunction -> ({Gray, Thick, Arrowheads[.05],
Arrow[#1, 0.22]} &),
VertexCoordinateRules ->
Thread[Thread[extremeBags -> extremePoses]],
VertexRenderingFunction -> (Inset[bags[#2], #] &),
PlotRange -> fullPR,
ImageSize -> 3*fullIS
]
(*** Show bags as 3d slides ***)
makeSlide[graphics_, pr_, h_] := (
Graphics3D[{
Texture[raster2texture[Rasterize[graphics, Background -> None]]],
EdgeForm[None],
Polygon[lift[h, pr2verts[pr]],
VertexTextureCoordinates -> pr2verts[{{0, 1}, {0, 1}}]]
}]
)
yoffset = 1/2;
slides = MapIndexed[
makeSlide[bags[#], getPlotRange[# /. vcoords],
yoffset*First[#2]] &, jnodes];
Show[slides, ImageSize -> 3*fullIS]
(*** Show 3d slides in orthographic projection ***)
image2 =
Show[slides, ViewPoint -> {0, 0, Infinity}, ImageSize -> fullIS,
Boxed -> False]
(*** Check that 3d and 2d images rasterize to identical resolution ***)
Dimensions[Rasterize[image1][[1, 1]]] ==
Dimensions[Rasterize[image2][[1, 1]]]