Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
319 views
in Technique[技术] by (71.8m points)

python - Merge multiple DataFrames Pandas

This might be considered as a duplicate of a thorough explanation of various approaches, however I can't seem to find a solution to my problem there due to a higher number of Data Frames.

I have multiple Data Frames (more than 10), each differing in one column VARX. This is just a quick and oversimplified example:

import pandas as pd

df1 = pd.DataFrame({'depth': [0.500000, 0.600000, 1.300000],
       'VAR1': [38.196202, 38.198002, 38.200001],
       'profile': ['profile_1', 'profile_1','profile_1']})

df2 = pd.DataFrame({'depth': [0.600000, 1.100000, 1.200000],
       'VAR2': [0.20440, 0.20442, 0.20446],
       'profile': ['profile_1', 'profile_1','profile_1']})

df3 = pd.DataFrame({'depth': [1.200000, 1.300000, 1.400000],
       'VAR3': [15.1880, 15.1820, 15.1820],
       'profile': ['profile_1', 'profile_1','profile_1']})

Each df has same or different depths for the same profiles, so

I need to create a new DataFrame which would merge all separate ones, where the key columns for the operation are depth and profile, with all appearing depth values for each profile.

The VARX value should be therefore NaN where there is no depth measurement of that variable for that profile.

The result should be a thus a new, compressed DataFrame with all VARX as additional columns to the depth and profile ones, something like this:

name_profile    depth   VAR1        VAR2        VAR3
profile_1   0.500000    38.196202   NaN         NaN
profile_1   0.600000    38.198002   0.20440     NaN
profile_1   1.100000    NaN         0.20442     NaN
profile_1   1.200000    NaN         0.20446     15.1880
profile_1   1.300000    38.200001   NaN         15.1820
profile_1   1.400000    NaN         NaN         15.1820

Note that the actual number of profiles is much, much bigger.

Any ideas?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Consider setting index on each data frame and then run the horizontal merge with pd.concat:

dfs = [df.set_index(['profile', 'depth']) for df in [df1, df2, df3]]

print(pd.concat(dfs, axis=1).reset_index())
#      profile  depth       VAR1     VAR2    VAR3
# 0  profile_1    0.5  38.198002      NaN     NaN
# 1  profile_1    0.6  38.198002  0.20440     NaN
# 2  profile_1    1.1        NaN  0.20442     NaN
# 3  profile_1    1.2        NaN  0.20446  15.188
# 4  profile_1    1.3  38.200001      NaN  15.182
# 5  profile_1    1.4        NaN      NaN  15.182

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...