To my knowledge, there are three R packages that allow the estimation of the multinomial logistic regression model: mlogit
, nnet
and globaltest
(from Bioconductor). I do not consider here the mnlogit
package, a faster and more efficient implementation of mlogit
.
All the above packages use different algorithms that, for small samples, give different results. These differencies vanishes for moderate sample sizes (try with n <- 100
).
Consider the following data generating process taken from the James Keirstead's blog:
n <- 40
set.seed(4321)
df1 <- data.frame(x1=runif(n,0,100), x2=runif(n,0,100))
df1 <- transform(df1, y=1+ifelse(100 - x1 - x2 + rnorm(n,sd=10) < 0, 0,
ifelse(100 - 2*x2 + rnorm(n,sd=10) < 0, 1, 2)))
str(df1)
'data.frame': 40 obs. of 3 variables:
$ x1: num 33.48 90.91 41.15 4.38 76.35 ...
$ x2: num 68.6 42.6 49.9 36.1 49.6 ...
$ y : num 1 1 3 3 1 1 1 1 3 3 ...
table(df1$y)
1 2 3
19 8 13
The model parameters estimated by the three packages are respectively:
library(mlogit)
df2 <- mlogit.data(df1, choice="y", shape="wide")
mlogit.mod <- mlogit(y ~ 1 | x1+x2, data=df2)
(mlogit.cf <- coef(mlogit.mod))
2:(intercept) 3:(intercept) 2:x1 3:x1 2:x2 3:x2
42.7874653 80.9453734 -0.5158189 -0.6412020 -0.3972774 -1.0666809
#######
library(nnet)
nnet.mod <- multinom(y ~ x1 + x2, df1)
(nnet.cf <- coef(nnet.mod))
(Intercept) x1 x2
2 41.51697 -0.5005992 -0.3854199
3 77.57715 -0.6144179 -1.0213375
#######
library(globaltest)
glbtest.mod <- globaltest::mlogit(y ~ x1+x2, data=df1)
(cf <- glbtest.mod@coefficients)
1 2 3
(Intercept) -41.2442934 1.5431814 39.7011119
x1 0.3856738 -0.1301452 -0.2555285
x2 0.4879862 0.0907088 -0.5786950
The mlogit
command of globaltest
fits the model without using a reference outcome category, hence the usual parameters can be calculated as follows:
(glbtest.cf <- rbind(cf[,2]-cf[,1],cf[,3]-cf[,1]))
(Intercept) x1 x2
[1,] 42.78747 -0.5158190 -0.3972774
[2,] 80.94541 -0.6412023 -1.0666813
Concerning the estimation of the parameters in the three packages, the method used in mlogit::mlogit
is explained in detail here.
In nnet::multinom
the model is a neural network with no hidden layers, no bias nodes and a softmax output layer; in our case there are 3 input units and 3 output units:
nnet:::summary.nnet(nnet.mod)
a 3-0-3 network with 12 weights
options were - skip-layer connections softmax modelling
b->o1 i1->o1 i2->o1 i3->o1
0.00 0.00 0.00 0.00
b->o2 i1->o2 i2->o2 i3->o2
0.00 41.52 -0.50 -0.39
b->o3 i1->o3 i2->o3 i3->o3
0.00 77.58 -0.61 -1.02
Maximum conditional likelihood is the method used in multinom
for model fitting.
The parameters of multinomial logit models are estimated in globaltest::mlogit
using maximum likelihood and working with an equivalent log-linear model and the Poisson likelihood. The method is described here.
For models estimated by multinom
the McFadden's pseudo R-squared can be easily calculated as follows:
nnet.mod.loglik <- nnet:::logLik.multinom(nnet.mod)
nnet.mod0 <- multinom(y ~ 1, df1)
nnet.mod0.loglik <- nnet:::logLik.multinom(nnet.mod0)
(nnet.mod.mfr2 <- as.numeric(1 - nnet.mod.loglik/nnet.mod0.loglik))
[1] 0.8483931
At this point, using stargazer
, I generate a report for the model estimated by mlogit::mlogit
which is as similar as possible to the report of multinom
.
The basic idea is to substitute the estimated coefficients and probabilities in the object created by multinom
with the corresponding estimates of mlogit
.
# Substitution of coefficients
nnet.mod2 <- nnet.mod
cf <- matrix(nnet.mod2$wts, nrow=4)
cf[2:nrow(cf), 2:ncol(cf)] <- t(matrix(mlogit.cf,nrow=2))
# Substitution of probabilities
nnet.mod2$wts <- c(cf)
nnet.mod2$fitted.values <- mlogit.mod$probabilities
Here is the result:
library(stargazer)
stargazer(nnet.mod2, type="text")
==============================================
Dependent variable:
----------------------------
2 3
(1) (2)
----------------------------------------------
x1 -0.516** -0.641**
(0.212) (0.305)
x2 -0.397** -1.067**
(0.176) (0.519)
Constant 42.787** 80.945**
(18.282) (38.161)
----------------------------------------------
Akaike Inf. Crit. 24.623 24.623
==============================================
Note: *p<0.1; **p<0.05; ***p<0.01
Now I am working on the last issue: how to visualize loglik, pseudo R2 and other information in the above stargazer
output.