Mose of embedded datastore other than SQLite doesn't have optimization for concurrent access, I was also curious about SQLite concurrent performance too, so I did a benchmark:
import time
import sqlite3
import os
import random
import sys
import multiprocessing
class Store():
def __init__(self, filename='kv.db'):
self.conn = sqlite3.connect(filename, timeout=60)
self.conn.execute('pragma journal_mode=wal')
self.conn.execute('create table if not exists "kv" (key integer primary key, value integer) without rowid')
self.conn.commit()
def get(self, key):
item = self.conn.execute('select value from "kv" where key=?', (key,))
if item:
return next(item)[0]
def set(self, key, value):
self.conn.execute('replace into "kv" (key, value) values (?,?)', (key, value))
self.conn.commit()
def worker(n):
d = [random.randint(0, 1<<31) for _ in range(n)]
s = Store()
for i in d:
s.set(i, i)
random.shuffle(d)
for i in d:
s.get(i)
def test(c):
n = 5000
start = time.time()
ps = []
for _ in range(c):
p = multiprocessing.Process(target=worker, args=(n,))
p.start()
ps.append(p)
while any(p.is_alive() for p in ps):
time.sleep(0.01)
cost = time.time() - start
print(f'{c:<10d}{cost:<7.2f}{n/cost:<20.2f}{n*c/cost:<14.2f}')
def main():
print(f'concurrencytime(s)pre process TPS(r/s)total TPS(r/s)')
for c in range(1, 9):
test(c)
if __name__ == '__main__':
main()
result on my 4 cores macOS box, SSD volume:
concurrency time(s) pre process TPS(r/s) total TPS(r/s)
1 0.65 7638.43 7638.43
2 1.30 3854.69 7709.38
3 1.83 2729.32 8187.97
4 2.43 2055.25 8221.01
5 3.07 1629.35 8146.74
6 3.87 1290.63 7743.78
7 4.80 1041.73 7292.13
8 5.37 931.27 7450.15
result on an 8 cores windows server 2012 cloud server, SSD volume:
concurrency time(s) pre process TPS(r/s) total TPS(r/s)
1 4.12 1212.14 1212.14
2 7.87 634.93 1269.87
3 14.06 355.56 1066.69
4 15.84 315.59 1262.35
5 20.19 247.68 1238.41
6 24.52 203.96 1223.73
7 29.94 167.02 1169.12
8 34.98 142.92 1143.39
turns out overall throughput is consistent regardless of concurrency, and SQLite is slower on windows than macOS, hope this is helpful.
As SQLite write lock is database wise, in order to get more TPS, you could partition data to multi-database files:
class MultiDBStore():
def __init__(self, buckets=5):
self.buckets = buckets
self.conns = []
for n in range(buckets):
conn = sqlite3.connect(f'kv_{n}.db', timeout=60)
conn.execute('pragma journal_mode=wal')
conn.execute('create table if not exists "kv" (key integer primary key, value integer) without rowid')
conn.commit()
self.conns.append(conn)
def _get_conn(self, key):
assert isinstance(key, int)
return self.conns[key % self.buckets]
def get(self, key):
item = self._get_conn(key).execute('select value from "kv" where key=?', (key,))
if item:
return next(item)[0]
def set(self, key, value):
conn = self._get_conn(key)
conn.execute('replace into "kv" (key, value) values (?,?)', (key, value))
conn.commit()
result on my mac with 20 partitions:
concurrency time(s) pre process TPS(r/s) total TPS(r/s)
1 2.07 4837.17 4837.17
2 2.51 3980.58 7961.17
3 3.28 3047.68 9143.03
4 4.02 2486.76 9947.04
5 4.44 2249.94 11249.71
6 4.76 2101.26 12607.58
7 5.25 1903.69 13325.82
8 5.71 1752.46 14019.70
total TPS is higher than single database file.