Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
746 views
in Technique[技术] by (71.8m points)

matplotlib - Violin Plot troubles in Python on log scale

My violin plots are showing weird formats when using a log scale on my plots. I've tried using matplotlib and seaborn and I get very similar results.

import matplotlib.pyplot as plt
import seaborn as sns

data = [[1e-05, 0.00102, 0.00498, 0.09154, 0.02009, 1e-05, 0.06649, 0.42253, 0.02062, 0.10812, 0.07128, 0.03903, 0.00506, 0.13391, 0.08668, 0.04127, 0.00927, 0.00118, 0.063, 0.18392, 0.05948, 0.07774, 0.14018, 0.0133, 0.00339, 0.00271, 0.05233, 0.00054, 0.0593, 1e-05, 0.00076, 0.03409, 0.71491, 0.02311, 0.10246, 0.12491, 0.05164, 0.1553, 0.01079, 0.01734, 0.02239, 0.1347, 0.02877, 0.04752, 0.00333, 0.04553, 0.03189, 0.00947, 0.00158, 0.00888, 0.12663, 0.07531, 0.12367, 0.11346, 0.06638, 0.06154, 1e-05, 0.1838, 0.08659, 0.05654, 0.07658, 0.0348, 0.02954, 0.0123, 0.01529, 0.05559, 0.00416, 0.00038, 0.14142, 0.00164, 0.03671, 0.10609, 0.01209, 0.0024, 0.11718, 0.11224, 0.06032, 0.09632, 0.12216, 0.00087, 0.06746, 0.00433, 0.06836, 0.09928, 2e-05, 0.14116, 0.05718, 0.01196, 0.04297, 0.00709, 0.10535, 0.04772, 0.05691, 0.06277, 1e-05, 0.03917, 0.0026, 0.06763, 0.02083, 0.32244, 0.00561, 0.03399, 0.08146, 0.10606, 0.01482, 0.00339, 0.02275, 0.00685, 0.1536, 0.0592, 0.08869, 1e-05, 0.20489, 0.00094, 0.00714, 0.06355, 0.03414, 0.03002, 0.02365, 0.04376, 0.0246, 0.02745, 0.07604, 0.12069, 1e-05, 0.02974, 0.10681, 0.00987, 0.02543, 0.01416, 0.00098, 3e-05, 0.00967, 0.11958, 0.02882, 0.03634, 0.19232, 0.12058, 0.36535, 0.07428, 0.02829, 0.09189, 0.03677, 0.00036, 0.0463, 0.57029, 0.0105, 0.00015, 0.06212, 0.0329, 0.06102, 0.12267], 
[0.01219, 0.14638, 0.03822, 0.05784, 0.03615, 0.03288, 0.00986, 0.05331, 0.01434, 0.00999, 0.05272, 0.03269, 0.0682, 0.15455, 0.09675, 0.02272, 0.0027, 0.01955, 0.06194, 0.00115, 0.07799, 0.03987, 0.11152, 0.07229, 0.007, 0.00075, 0.04499, 0.01534, 0.04301, 0.01247, 0.09511, 0.02297, 0.05538, 0.04614, 0.07359, 0.06909, 1e-05, 0.04247, 0.05485, 0.00071, 0.082, 0.07614, 0.03751, 0.01625, 0.03309, 0.03228, 0.08109, 0.02171, 0.07246, 0.00353, 0.02434, 0.01394, 0.037, 0.02429, 0.15162, 0.0527, 0.0201, 0.07954, 0.07626, 0.09285, 0.05071, 0.01224, 0.06331, 0.07556, 0.04952, 0.00052, 0.00588, 0.132, 0.00067, 0.00012, 0.00084, 0.03865, 0.02362, 0.08976, 0.18545, 0.04882, 0.03789, 0.05006, 0.02979, 0.003, 0.09262, 0.05668, 0.02486, 0.05855, 0.11588, 0.07713, 0.10428, 0.00706, 0.02467, 0.13257, 0.11547, 0.06143, 0.09478, 0.06099, 0.02483, 0.09312, 0.16867, 0.07236, 0.10962, 0.04149, 0.05005, 0.09087, 0.0313, 0.03697, 0.07201, 2e-05, 0.00259, 0.00115, 0.03907, 0.02931, 0.14907, 0.05598, 0.07087, 0.09709, 0.10653, 0.11936, 0.08196, 0.1213, 0.00627, 0.08496, 0.00038, 0.03537, 0.20043, 0.05159, 0.05872, 0.07754, 0.07621, 0.05924, 0.09587, 0.02653, 0.07135, 1e-05, 0.01377, 0.0062, 0.01965, 0.00115, 0.07529, 0.04709, 0.05458, 0.10895, 0.02195, 0.04534, 0.015, 0.00577, 0.05784, 0.01691, 0.08103, 0.04178, 0.04328, 0.01204, 0.03463, 0.03805, 0.01231, 0.03646, 0.01162, 0.16536, 0.03471, 0.00541, 0.09088, 0.06447, 0.07263, 0.05924, 0.0952, 0.09938, 0.04464, 0.05543, 0.03827, 0.11514, 0.02803, 0.09589, 0.0254, 0.05351, 0.00171, 0.00856, 0.05828, 0.11975, 7e-05, 0.07093, 0.06077, 0.0384, 0.00163, 0.05992, 0.00463, 0.00975, 0.00429, 0.12965, 0.03388, 0.02372, 0.07622, 0.04341, 0.06637, 0.00578, 0.06946, 0.00469, 0.11668, 0.07033, 0.06806, 0.05505, 0.02195, 0.05089, 0.03404, 0.00552, 0.05331, 0.03695, 0.41581, 0.01553, 0.02045, 0.09779, 0.03842, 0.01115, 0.05392, 0.01147, 0.05855, 0.05588, 0.20745, 0.01536, 0.03993, 0.07677, 0.01388, 0.0029, 0.00235, 0.05823, 0.05237, 0.00425, 0.09225, 0.00703, 0.24038, 0.06733, 0.00064, 0.08959, 0.04365, 0.02308, 0.04566, 0.08395, 0.0038, 0.05322, 0.0145, 0.02012, 0.07084, 0.08202, 0.01091, 0.03738, 0.03798, 0.03473, 0.08534, 0.00133, 0.04046, 0.10119, 0.0317, 0.00312, 0.03614, 0.10442, 0.13286, 0.0042, 0.04229, 0.01735, 0.09879, 0.07516, 0.00303, 0.08062, 0.09347, 0.03473, 0.05099, 0.16373, 0.08988, 0.04696, 0.07488, 0.12159, 0.11098, 0.00549, 0.00122, 0.05276, 0.09883, 0.01346, 0.02059, 0.07394, 0.0413, 0.08766, 0.0124, 0.09913, 0.00754, 0.15671, 0.02699, 0.09978, 1e-05, 0.00243, 0.02819, 0.00027, 0.05793, 0.03165, 0.10168, 0.00042, 0.00044, 0.01332, 0.00542, 0.05946, 0.009, 0.10857, 0.01699, 1e-05, 0.00073, 0.10842, 0.17143, 0.00036, 0.00014, 0.10508, 0.01333, 0.34202, 0.12201, 0.04618, 0.02507, 0.02939, 0.03497, 0.01905, 0.00136, 0.02354, 0.00061, 0.08514, 0.14529, 0.04097, 0.12821, 0.18862], 
[0.04683, 0.02943, 0.07885, 0.07846, 0.06855, 0.02815, 0.00792, 0.0826, 0.00554, 0.01041, 0.03957, 0.0126, 0.08399, 0.15046, 0.15594, 0.03941, 0.0428, 0.11343, 0.15665, 0.07381, 0.04386, 0.12008, 0.04816, 0.04844, 0.08248, 0.08023, 0.03011, 0.00464, 0.07204, 0.08376, 0.05777, 0.06164, 0.00697, 0.02023, 0.04844, 0.0592, 0.00954, 0.06357, 0.0122, 0.05905, 0.00705, 0.0054, 0.08822, 0.06056, 0.02598, 0.02136, 0.05638, 0.03768, 0.05101, 0.08908, 0.0384, 0.01579, 0.04023, 0.03746, 0.17236, 0.08293, 0.12469, 0.14018, 0.04301, 0.07258, 0.02678, 0.08078, 0.07698, 0.06346, 0.06984, 0.04832, 0.07512, 0.0342, 0.05339, 0.026, 0.11585, 0.02744, 0.00979, 0.01312, 0.05915, 0.01326, 0.00107, 0.00737, 0.05971, 0.0451, 0.05788, 0.0007, 0.0043, 0.00142, 0.0019, 0.00055, 0.00223, 0.02441, 0.04555, 0.03869, 0.05791, 0.05517, 0.15743, 0.04517, 0.47114, 0.05639, 0.00152, 0.00371, 1e-05, 1e-05, 0.04192, 0.02758, 0.01945, 0.02763, 0.04021, 0.02844, 0.01823, 0.10665, 0.02067, 0.05433, 0.05591, 0.00733, 0.00858, 0.01949, 0.06519, 0.07793, 0.00199, 0.09916, 0.08717, 0.06273, 0.09408, 0.00638, 0.00248, 0.08922, 0.09157, 0.03525, 0.01791, 0.06016, 0.01939, 0.12194, 0.08303, 0.0831, 0.02714, 0.06312, 0.11584, 0.11334, 0.04314, 0.02575, 0.00629, 0.02408, 0.02274, 0.03037, 0.06737, 0.0175, 0.00888, 0.06568, 0.0839, 0.0085, 0.00831, 0.00154, 0.01072, 0.01289, 0.09074, 0.02131, 0.02997, 0.02343, 0.02355, 0.05324, 0.09564, 0.17995, 0.00828, 0.0148, 0.01858, 0.02106, 0.00288, 0.00344, 0.001, 0.02143, 0.00732, 0.01458, 0.01547, 0.01742, 0.00032, 0.24005, 0.00028, 0.00302, 0.07275, 0.04579, 0.06316, 0.02572, 0.09316, 0.03062, 0.10521, 0.07123, 0.03069, 0.07958, 0.04484, 0.01948, 0.01951, 0.01282, 0.00868, 0.07931, 0.01105, 0.01235, 0.09297, 0.06959, 0.00716, 0.0271, 0.00592, 0.09362, 0.00319, 0.00859, 0.08486, 0.02001, 0.00194, 0.04189, 0.09024, 0.07705, 0.07365, 0.01123, 0.03202, 0.01361, 0.00098, 0.00397, 0.00139, 0.00397, 0.00445, 1e-05, 0.00267, 0.06564, 0.06567, 0.06566, 0.06566, 0.09249, 0.03475, 0.0338, 0.0664, 0.02986, 0.04024, 0.00835, 0.04304, 0.04081, 0.04534, 0.06636, 0.03312, 0.06175, 0.03117, 0.02243, 0.03454, 0.11135, 0.07016, 0.0681, 0.09716, 0.02589, 0.4367, 0.08293, 0.11834, 0.00191, 0.10913, 0.00159, 0.0638, 0.01808, 0.00116, 0.00911, 0.01408, 0.09179, 0.02122, 0.05026, 0.05144, 0.03169, 0.06674]]

fig, ax = plt.subplots(1,3, sharey=True)
sns.violinplot(data=data, ax=ax[0])
sns.swarmplot(data=data, ax=ax[1])
sns.stripplot(data=data, ax=ax[2])

When using the data on a linear scale, everything looks fine. enter image description here However, a lot of my data is between 0.1 and 0.00001 so I wanted to use a log scale for better visualization.

When switching to a log scale:

plt.yscale('log')
plt.ylim(0.000001, 1)

My swarmplot and stripplot plots look fine, however, the violin plots do not condense towards the bottom. Notice that I also don't have any negative values, but the violin plots always suggest that I do.

enter image description here

Overall, I would have expected my violin plots to look something more like this (which was done in R).

enter image description here

Any suggestions on how to get the violin plots to act more like the plots in the last picture (i.e. condensing when there are fewer data points) using seaborn or matplotlib, or another python based visualization?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Another option to try, is to transform the data.

The tick labels for the y-axis can be rewritten using a custom formatter. And minor ticks similar to a log plot can be generated.

import matplotlib.pyplot as plt
from matplotlib import ticker as mticker
import seaborn as sns
import numpy as np

data = [[1e-05, 0.00102, 0.00498, 0.09154, 0.02009, 1e-05, 0.06649, 0.42253, 0.02062, 0.10812, 0.07128, 0.03903, 0.00506, 0.13391, 0.08668, 0.04127, 0.00927, 0.00118, 0.063, 0.18392, 0.05948, 0.07774, 0.14018, 0.0133, 0.00339, 0.00271, 0.05233, 0.00054, 0.0593, 1e-05, 0.00076, 0.03409, 0.71491, 0.02311, 0.10246, 0.12491, 0.05164, 0.1553, 0.01079, 0.01734, 0.02239, 0.1347, 0.02877, 0.04752, 0.00333, 0.04553, 0.03189, 0.00947, 0.00158, 0.00888, 0.12663, 0.07531, 0.12367, 0.11346, 0.06638, 0.06154, 1e-05, 0.1838, 0.08659, 0.05654, 0.07658, 0.0348, 0.02954, 0.0123, 0.01529, 0.05559, 0.00416, 0.00038, 0.14142, 0.00164, 0.03671, 0.10609, 0.01209, 0.0024, 0.11718, 0.11224, 0.06032, 0.09632, 0.12216, 0.00087, 0.06746, 0.00433, 0.06836, 0.09928, 2e-05, 0.14116, 0.05718, 0.01196, 0.04297, 0.00709, 0.10535, 0.04772, 0.05691, 0.06277, 1e-05, 0.03917, 0.0026, 0.06763, 0.02083, 0.32244, 0.00561, 0.03399, 0.08146, 0.10606, 0.01482, 0.00339, 0.02275, 0.00685, 0.1536, 0.0592, 0.08869, 1e-05, 0.20489, 0.00094, 0.00714, 0.06355, 0.03414, 0.03002, 0.02365, 0.04376, 0.0246, 0.02745, 0.07604, 0.12069, 1e-05, 0.02974, 0.10681, 0.00987, 0.02543, 0.01416, 0.00098, 3e-05, 0.00967, 0.11958, 0.02882, 0.03634, 0.19232, 0.12058, 0.36535, 0.07428, 0.02829, 0.09189, 0.03677, 0.00036, 0.0463, 0.57029, 0.0105, 0.00015, 0.06212, 0.0329, 0.06102, 0.12267],
[0.01219, 0.14638, 0.03822, 0.05784, 0.03615, 0.03288, 0.00986, 0.05331, 0.01434, 0.00999, 0.05272, 0.03269, 0.0682, 0.15455, 0.09675, 0.02272, 0.0027, 0.01955, 0.06194, 0.00115, 0.07799, 0.03987, 0.11152, 0.07229, 0.007, 0.00075, 0.04499, 0.01534, 0.04301, 0.01247, 0.09511, 0.02297, 0.05538, 0.04614, 0.07359, 0.06909, 1e-05, 0.04247, 0.05485, 0.00071, 0.082, 0.07614, 0.03751, 0.01625, 0.03309, 0.03228, 0.08109, 0.02171, 0.07246, 0.00353, 0.02434, 0.01394, 0.037, 0.02429, 0.15162, 0.0527, 0.0201, 0.07954, 0.07626, 0.09285, 0.05071, 0.01224, 0.06331, 0.07556, 0.04952, 0.00052, 0.00588, 0.132, 0.00067, 0.00012, 0.00084, 0.03865, 0.02362, 0.08976, 0.18545, 0.04882, 0.03789, 0.05006, 0.02979, 0.003, 0.09262, 0.05668, 0.02486, 0.05855, 0.11588, 0.07713, 0.10428, 0.00706, 0.02467, 0.13257, 0.11547, 0.06143, 0.09478, 0.06099, 0.02483, 0.09312, 0.16867, 0.07236, 0.10962, 0.04149, 0.05005, 0.09087, 0.0313, 0.03697, 0.07201, 2e-05, 0.00259, 0.00115, 0.03907, 0.02931, 0.14907, 0.05598, 0.07087, 0.09709, 0.10653, 0.11936, 0.08196, 0.1213, 0.00627, 0.08496, 0.00038, 0.03537, 0.20043, 0.05159, 0.05872, 0.07754, 0.07621, 0.05924, 0.09587, 0.02653, 0.07135, 1e-05, 0.01377, 0.0062, 0.01965, 0.00115, 0.07529, 0.04709, 0.05458, 0.10895, 0.02195, 0.04534, 0.015, 0.00577, 0.05784, 0.01691, 0.08103, 0.04178, 0.04328, 0.01204, 0.03463, 0.03805, 0.01231, 0.03646, 0.01162, 0.16536, 0.03471, 0.00541, 0.09088, 0.06447, 0.07263, 0.05924, 0.0952, 0.09938, 0.04464, 0.05543, 0.03827, 0.11514, 0.02803, 0.09589, 0.0254, 0.05351, 0.00171, 0.00856, 0.05828, 0.11975, 7e-05, 0.07093, 0.06077, 0.0384, 0.00163, 0.05992, 0.00463, 0.00975, 0.00429, 0.12965, 0.03388, 0.02372, 0.07622, 0.04341, 0.06637, 0.00578, 0.06946, 0.00469, 0.11668, 0.07033, 0.06806, 0.05505, 0.02195, 0.05089, 0.03404, 0.00552, 0.05331, 0.03695, 0.41581, 0.01553, 0.02045, 0.09779, 0.03842, 0.01115, 0.05392, 0.01147, 0.05855, 0.05588, 0.20745, 0.01536, 0.03993, 0.07677, 0.01388, 0.0029, 0.00235, 0.05823, 0.05237, 0.00425, 0.09225, 0.00703, 0.24038, 0.06733, 0.00064, 0.08959, 0.04365, 0.02308, 0.04566, 0.08395, 0.0038, 0.05322, 0.0145, 0.02012, 0.07084, 0.08202, 0.01091, 0.03738, 0.03798, 0.03473, 0.08534, 0.00133, 0.04046, 0.10119, 0.0317, 0.00312, 0.03614, 0.10442, 0.13286, 0.0042, 0.04229, 0.01735, 0.09879, 0.07516, 0.00303, 0.08062, 0.09347, 0.03473, 0.05099, 0.16373, 0.08988, 0.04696, 0.07488, 0.12159, 0.11098, 0.00549, 0.00122, 0.05276, 0.09883, 0.01346, 0.02059, 0.07394, 0.0413, 0.08766, 0.0124, 0.09913, 0.00754, 0.15671, 0.02699, 0.09978, 1e-05, 0.00243, 0.02819, 0.00027, 0.05793, 0.03165, 0.10168, 0.00042, 0.00044, 0.01332, 0.00542, 0.05946, 0.009, 0.10857, 0.01699, 1e-05, 0.00073, 0.10842, 0.17143, 0.00036, 0.00014, 0.10508, 0.01333, 0.34202, 0.12201, 0.04618, 0.02507, 0.02939, 0.03497, 0.01905, 0.00136, 0.02354, 0.00061, 0.08514, 0.14529, 0.04097, 0.12821, 0.18862],
[0.04683, 0.02943, 0.07885, 0.07846, 0.06855, 0.02815, 0.00792, 0.0826, 0.00554, 0.01041, 0.03957, 0.0126, 0.08399, 0.15046, 0.15594, 0.03941, 0.0428, 0.11343, 0.15665, 0.07381, 0.04386, 0.12008, 0.04816, 0.04844, 0.08248, 0.08023, 0.03011, 0.00464, 0.07204, 0.08376, 0.05777, 0.06164, 0.00697, 0.02023, 0.04844, 0.0592, 0.00954, 0.06357, 0.0122, 0.05905, 0.00705, 0.0054, 0.08822, 0.06056, 0.02598, 0.02136, 0.05638, 0.03768, 0.05101, 0.08908, 0.0384, 0.01579, 0.04023, 0.03746, 0.17236, 0.08293, 0.12469, 0.14018, 0.04301, 0.07258, 0.02678, 0.08078, 0.07698, 0.06346, 0.06984, 0.04832, 0.07512, 0.0342, 0.05339, 0.026, 0.11585, 0.02744, 0.00979, 0.01312, 0.05915, 0.01326, 0.00107, 0.00737, 0.05971, 0.0451, 0.05788, 0.0007, 0.0043, 0.00142, 0.0019, 0.00055, 0.00223, 0.02441, 0.04555, 0.03869, 0.05791, 0.05517, 0.15743, 0.04517, 0.47114, 0.05639, 0.00152, 0.00371, 1e-05, 1e-05, 0.04192, 0.02758, 0.01945, 0.02763, 0.04021, 0.02844, 0.01823, 0.10665, 0.02067, 0.05433, 0.05591, 0.00733, 0.00858, 0.01949, 0.06519, 0.07793, 0.00199, 0.09916, 0.08717, 0.06273, 0.09408, 0.00638, 0.00248, 0.08922, 0.09157, 0.03525, 0.01791, 0.06016, 0.01939, 0.12194, 0.08303, 0.0831, 0.02714, 0.06312, 0.11584, 0.11334, 0.04314, 0.02575, 0.00629, 0.02408, 0.02274, 0.03037, 0.06737, 0.0175, 0.00888, 0.06568, 0.0839, 0.0085, 0.00831, 0.00154, 0.01072, 0.01289, 0.09074, 0.02131, 0.02997, 0.02343, 0.02355, 0.05324, 0.09564, 0.17995, 0.00828, 0.0148, 0.01858, 0.02106, 0.00288, 0.00344, 0.001, 0.02143, 0.00732, 0.01458, 0.01547, 0.01742, 0.00032, 0.24005, 0.00028, 0.00302, 0.07275, 0.04579, 0.06316, 0.02572, 0.09316, 0.03062, 0.10521, 0.07123, 0.03069, 0.07958, 0.04484, 0.01948, 0.01951, 0.01282, 0.00868, 0.07931, 0.01105, 0.01235, 0.09297, 0.06959, 0.00716, 0.0271, 0.00592, 0.09362, 0.00319, 0.00859, 0.08486, 0.02001, 0.00194, 0.04189, 0.09024, 0.07705, 0.07365, 0.01123, 0.03202, 0.01361, 0.00098, 0.00397, 0.00139, 0.00397, 0.00445, 1e-05, 0.00267, 0.06564, 0.06567, 0.06566, 0.06566, 0.09249, 0.03475, 0.0338, 0.0664, 0.02986, 0.04024, 0.00835, 0.04304, 0.04081, 0.04534, 0.06636, 0.03312, 0.06175, 0.03117, 0.02243, 0.03454, 0.11135, 0.07016, 0.0681, 0.09716, 0.02589, 0.4367, 0.08293, 0.11834, 0.00191, 0.10913, 0.00159, 0.0638, 0.01808, 0.00116, 0.00911, 0.01408, 0.09179, 0.02122, 0.05026, 0.05144, 0.03169, 0.06674]]

log_data = [[np.log10(d) for d in row] for row in data]

fig, ax = plt.subplots(1, 3, sharey=True)
sns.violinplot(data=log_data, ax=ax[0])
sns.swarmplot(data=log_data, ax=ax[1])
sns.stripplot(data=log_data, ax=ax[2])
ax[0].yaxis.set_major_formatter(mticker.StrMethodFormatter("$10^{{{x:.0f}}}$"))
ax[0].yaxis.set_ticks([np.log10(x) for p in range(-6,1) for x in np.linspace(10**p, 10**(p+1), 10)], minor=True)
plt.show()

This should show the expected plot.

sample plot


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...