I want the correlations between individual variables and principal components in python. I am using PCA in sklearn. I don't understand how can I achieve the loading matrix after I have decomposed my data? My code is here.
iris = load_iris() data, y = iris.data, iris.target pca = PCA(n_components=2) transformed_data = pca.fit(data).transform(data) eigenValues = pca.explained_variance_ratio_
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html doesn't mention how this can be achieved.
Multiply each component by the square root of its corresponding eigenvalue:
pca.components_.T * np.sqrt(pca.explained_variance_)
This should produce your loading matrix.
2.1m questions
2.1m answers
60 comments
57.0k users