Method 1 - The Reversal Algorithm(Good One):
Algorithm:
rotate(arr[], d, n)
reverse(arr[], l, n);
reverse(arr[], 1, n-d) ;
reverse(arr[], n - d + 1, n);
Let AB are the two parts of the input array where A = arr[0..n-d-1] and B = arr[n-d..n-1]. The idea of the algorithm is:
Reverse all to get (AB) r = BrAr.
Reverse A to get BrA. /* Ar is reverse of A */
Reverse B to get BA. /* Br is reverse of B */
For arr[] = [1, 2, 3, 4, 5, 6, 7], d =2 and n = 7
A = [1, 2, 3, 4, 5] and B = [ 6, 7]
Reverse all, we get BrAr = [7, 6, 5, 4, 3, 2, 1]
Reverse A, we get ArB = [7, 6, 1, 2, 3, 4, 5]
Reverse B, we get ArBr = [6, 7, 5, 4, 3, 1, 2]
Here is the Code Snippet:
void righttRotate(int arr[], int d, int n)
{
reverseArray(arr, 0, n-1);
reverseArray(arr, 0, n-d-1);
reverseArray(arr, n-d, n-1);
}
void reverseArray(int arr[], int start, int end)
{
int i;
int temp;
while(start < end)
{
temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
Method 2 - A Juggling Algorithm
Divide the array in different sets where number of sets is equal to GCD of n and d and move the elements within sets.
If GCD is 1, then elements will be moved within one set only, we just start with temp = arr[0] and keep moving arr[I+d] to arr[I] and finally store temp at the right place.
Here is an example for n =12 and d = 3. GCD is 3 and
Let arr[] be {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
Elements are first moved in first set
arr[] after this step --> {4 2 3 7 5 6 10 8 9 1 11 12}
Then in second set.
arr[] after this step --> {4 5 3 7 8 6 10 11 9 1 2 12}
Finally in third set.
arr[] after this step --> {4 5 6 7 8 9 10 11 12 1 2 3}
Here is the code:
void leftRotate(int arr[], int d, int n)
{
int i, j, k, temp;
int gcd = gcd(d, n);
for (i = 0; i < gcd; i++)
{
/* move i-th values of blocks */
temp = arr[i];
j = i;
while(1)
{
k = j + d;
if (k >= n)
k = k - n;
if (k == i)
break;
arr[j] = arr[k];
j = k;
}
arr[j] = temp;
}
}
int gcd(int a,int b)
{
if(b==0)
return a;
else
return gcd(b, a%b);
}
Time complexity: O(n)
Auxiliary Space: O(1)
Method 3 - Rotate one by one:
righttRotate(arr[], d, n)
start
For i = 0 to i < d
Right rotate all elements of arr[] by one
end
To rotate by one, store arr[n-1] in a temporary variable temp, move arr[1] to arr[2], arr[2] to arr[3] …and finally temp to arr[0]
Let us take the same example arr[] = [1, 2, 3, 4, 5, 6, 7], d = 2, rotate arr[] by one 2 times. We get [7, 1, 2, 3, 4, 5, 6] after first rotation and [ 6, 7, 1, 2, 3, 4, 5] after second rotation.
Her is Code Snippet:
void leftRotate(int arr[], int d, int n)
{
int i;
for (i = 0; i < d; i++)
leftRotatebyOne(arr, n);
}
void leftRotatebyOne(int arr[], int n)
{
int i, temp;
temp = arr[n-n];
for (i = 0; i < n-1; i++)
arr[i] = arr[i+1];
arr[n - 1] = temp;
}
Time complexity: O(n*d)
Auxiliary Space: O(1)