Make one path the clipping path, draw the other path, then search for pixels that survived the clipping process:
// initialise and erase context
CGContextAddPath(context, path1);
CGContextClip(context);
// set fill colour to intersection colour
CGContextAddPath(context, path2);
CGContextFillPath(context);
// search for pixels that match intersection colour
This works because clipping = intersecting.
Don't forget that intersection depends on the definition of interiority, of which there are several. This code uses the winding-number fill rule, you might want the even odd rule or something else again. If interiority doesn't keep you up at night, then this code should be fine.
My previous answer involved drawing transparent curves to an RGBA context. This solution is superior to the old one because it is
- simpler
- uses a quarter of the memory as an 8bit greyscale context suffices
- obviates the need for hairy, difficult-to-debug transparency code
Who could ask for more?
I guess you could ask for a complete implementation, ready to cut'n'paste, but that would spoil the fun and obfuscate an otherwise simple answer.
OLDER, HARDER TO UNDERSTAND AND LESS EFFICIENT ANSWER
Draw both CGPathRefs
separately at 50% transparency into a zeroed, CGBitmapContextCreate
-ed RGBA memory buffer and check for any pixel values > 128. This works on any platform that supports CoreGraphics (i.e. iOS and OSX).
In pseudocode
// zero memory
CGContextRef context;
context = CGBitmapContextCreate(memory, wide, high, 8, wide*4, CGColorSpaceCreateDeviceRGB(), kCGImageAlphaPremultipliedLast);
CGContextSetRGBFillColor(context, 1, 1, 1, 0.5); // now everything you draw will be at 50%
// draw your path 1 to context
// draw your path 2 to context
// for each pixel in memory buffer
if(*p > 128) return true; // curves intersect
else p+= 4; // keep looking
Let the resolution of the rasterised versions be your precision and choose the precision to suit your performance needs.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…