Suppose we're given a prior on X (e.g. X ~ Gaussian) and a forward operator y = f(x). Suppose further we have observed y by means of an experiment and that this experiment can be repeated indefinitely. The output Y is assumed to be Gaussian (Y ~ Gaussian) or noise-free (Y ~ Delta(observation)).
How to consistently update our subjective degree of knowledge about X given the observations? I've tried the following model with PyMC, but it seems I'm missing something:
from pymc import *
xtrue = 2 # this value is unknown in the real application
x = rnormal(0, 0.01, size=10000) # initial guess
for i in range(5):
X = Normal('X', x.mean(), 1./x.var())
Y = X*X # f(x) = x*x
OBS = Normal('OBS', Y, 0.1, value=xtrue*xtrue+rnormal(0,1), observed=True)
model = Model([X,Y,OBS])
mcmc = MCMC(model)
mcmc.sample(10000)
x = mcmc.trace('X')[:] # posterior samples
The posterior is not converging to xtrue.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…