You are looking for split
split(df, with(df, interaction(v1,v2)), drop = TRUE)
$E.X
v1 v2 v3 v4 v5
3 E X 2 12 15
5 E X 2 14 16
$D.Y
v1 v2 v3 v4 v5
2 D Y 10 12 8
$A.Z
v1 v2 v3 v4 v5
1 A Z 1 10 12
As noted in the comments
any of the following would work
library(microbenchmark)
microbenchmark(
split(df, list(df$v1,df$v2), drop = TRUE),
split(df, interaction(df$v1,df$v2), drop = TRUE),
split(df, with(df, interaction(v1,v2)), drop = TRUE))
Unit: microseconds
expr min lq median uq max neval
split(df, list(df$v1, df$v2), drop = TRUE) 1119.845 1129.3750 1145.8815 1182.119 3910.249 100
split(df, interaction(df$v1, df$v2), drop = TRUE) 893.749 900.5720 909.8035 936.414 3617.038 100
split(df, with(df, interaction(v1, v2)), drop = TRUE) 895.150 902.5705 909.8505 927.128 1399.284 100
It appears interaction
is slightly faster (probably due the fact that the f = list(...)
are just converted to an interaction within the function)
Edit
If you just want use the subset data.frames then I would suggest using data.table for ease of coding
library(data.table)
dt <- data.table(df)
dt[, plot(v4, v5), by = list(v1, v2)]
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…