Bill Venables offers this solution in this answer from the R mailing list to which I've made some slight modifications:
cor.prob <- function(X, dfr = nrow(X) - 2) {
R <- cor(X)
above <- row(R) < col(R)
r2 <- R[above]^2
Fstat <- r2 * dfr / (1 - r2)
R[above] <- 1 - pf(Fstat, 1, dfr)
cor.mat <- t(R)
cor.mat[upper.tri(cor.mat)] <- NA
cor.mat
}
So let's test it out:
set.seed(123)
data <- matrix(rnorm(100), 20, 5)
cor.prob(data)
[,1] [,2] [,3] [,4] [,5]
[1,] 1.0000000 NA NA NA NA
[2,] 0.7005361 1.0000000 NA NA NA
[3,] 0.5990483 0.6816955 1.0000000 NA NA
[4,] 0.6098357 0.3287116 0.5325167 1.0000000 NA
[5,] 0.3364028 0.1121927 0.1329906 0.5962835 1
Does that line up with cor.test?
cor.test(data[,2], data[,3])
Pearson's product-moment correlation
data: data[, 2] and data[, 3]
t = 0.4169, df = 18, p-value = 0.6817
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.3603246 0.5178982
sample estimates:
cor
0.09778865
Seems to work ok.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…