I would like to extract the column name in the function call to mutate_if
. With this, I then want to look up a value in a
different table and fill in missing values with the lookup value. I tried using quosure
syntax, but it is not working.
Is there a possibility to extract the column name directly?
Sample Data
df <- structure(list(x = 1:10,
y = c(1L, 2L, 3L, NA, 1L, 2L, 3L, NA, 1L, 2L),
z = c(NA, 2L, 3L, NA, NA, 2L, 3L, NA, NA, 2L),
a = c("a", "b", "c", "d", "e", "a", "b", "c", "d", "e")),
.Names = c("x", "y", "z", "a"),
row.names = c(NA, -10L),
class = c("tbl_df", "tbl", "data.frame"))
df_lookup <- tibble(x = 0L, y = 5L, z = 8L)
Not working
It does not work to extract the name somehow directly.
df %>%
mutate_if(is.numeric, funs({
x <- .
x <- enquo(x)
lookup_value <- df_lookup %>% pull(quo_name(x))
x <- ifelse(is.na(x), lookup_value, x)
return(x)
}))
With an extra function I'm able to extract the name but then the replacement doesn't work anymore.
custom_mutate <- function(v) {
v <- enquo(v)
lookup_value <- df_lookup %>% pull(quo_name(v))
# ifelse(is.na((!!v)), lookup_value, (!!v))
}
df %>%
mutate_if(is.numeric, funs(custom_mutate(v = .)))
Works
If I add the df
as an additional argument to my custom function it works, but is there a way without this? It feels wrong and not how dplyr
is meant to be... Correct me if I'm wrong ;)
In addition to this I have to use UQE
instead of !!
and as it says in Programming with dplyr:
UQE() is for expert use only
custom_mutate2 <- function(v, df) {
v <- enquo(v)
lookup_value <- df_lookup %>% pull(quo_name(v))
df %>%
mutate(UQE(v) := ifelse(is.na((!!v)), lookup_value, (!!v))) %>%
pull(!!v)
}
df %>%
mutate_if(is.numeric, funs(custom_mutate2(v = ., df = df)))
Expected output
# A tibble: 10 x 4
# x y z a
# <int> <int> <int> <chr>
# 1 1 1 8 a
# 2 2 2 2 b
# 3 3 3 3 c
# 4 4 5 8 d
# 5 5 1 8 e
# 6 6 2 2 a
# 7 7 3 3 b
# 8 8 5 8 c
# 9 9 1 8 d
# 10 10 2 2 e
See Question&Answers more detail:
os