I would use bootstrapping method.
See here: http://phe.rockefeller.edu/LogletLab/whitepaper/node17.html
Simple example for noisy gaussian:
x = arange(-10, 10, 0.01)
# model function
def f(p):
mu, s = p
return exp(-(x-mu)**2/(2*s**2))
# create error function for dataset
def fff(d):
def ff(p):
return d-f(p)
return ff
# create noisy dataset from model
def noisy_data(p):
return f(p)+normal(0,0.1,len(x))
# fit dataset to model with least squares
def fit(d):
ff = fff(d)
p = leastsq(ff,[0,1])[0]
return p
# bootstrap estimation
def bootstrap(d):
p0 = fit(d)
residuals = f(p0)-d
s_residuals = std(residuals)
ps = []
for i in range(1000):
new_d = d+normal(0,s_residuals,len(d))
ps.append(fit(new_d))
ps = array(ps)
mean_params = mean(ps,0)
std_params = std(ps,0)
return mean_params, std_params
data = noisy_data([0.5, 2.1])
mean_params, std_params = bootstrap(data)
print "95% confidence interval:"
print "mu: ", mean_params[0], " +/- ", std_params[0]*1.95996
print "sigma: ", mean_params[1], " +/- ", std_params[1]*1.95996
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…