Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
848 views
in Technique[技术] by (71.8m points)

algorithm - small cycle finding in a planar graph

I have a geometric undirected planar graph, that is a graph where each node has a location and no 2 edges cross, and I want to find all cycles that have no edges crossing them.

Are there any good solutions known to this problem?


What I'm planning on doing is a sort of A* like solution:

  • insert every edge in a min heap as a path
  • extend the shortest path with every option
  • cull paths that loop back to other than there start (might not be needed)
  • cull paths that would be the third to use ang given edge

Does anyone see an issue with this? Will it even work?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

My first instinct is to use a method similar to a wall following maze solver. Essentially, follow edges, and always take the rightmost edge out of a vertex. Any cycles you encounter with this method will be boundaries of a face. You'll have to keep track of which edges you've traversed in which direction. Once you've traversed an edge in both directions, you've identified the faces it separates. Once all edges have been traversed in both directions, you'll have identified all faces by their boundaries.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...