Addressing your first question: first you will need to define the coordinates of your torus in toroidal coordinates (seems natural!) and then convert to Cartesian coordinates, which is how MATLAB expects all plots to be constructed (unless you are making a polar plot, of course). So we start of by defining our toroidal coordinates:
aminor = 1.; % Torus minor radius
Rmajor = 3.; % Torus major radius
theta = linspace(-pi, pi, 64) ; % Poloidal angle
phi = linspace(0., 2.*pi, 64) ; % Toroidal angle
We just want a single surface of the torus, so the minor radius is a scalar. We now make a 2D mesh of these coordinates:
[t, p] = meshgrid(phi, theta);
and convert to 3D Cartesian coordinates using the formulas given on the Wikipedia page linked to in the question:
x = (Rmajor + aminor.*cos(p)) .* cos(t);
y = (Rmajor + aminor.*cos(p)) .* sin(t);
z = aminor.*sin(p);
Now we have our torus defined in 3D, we can plot it using surf
:
surf(x, y, z)
axis equal
Edit: To address your second question, it depends how you have your distortions stored, but say you have a matrix defined at each toroidal and poloidal point, you will just have to multiply the constant that is the minor radius by the distortion. In the following I create a distortion matrix that is the same dimensions as my toroidal and poloidal angle coordinate matrices and that is normally distributed about a mean of 1 with a FWHM of 0.1:
distortion = 1. + 0.1 * randn(64, 64);
x = (Rmajor + aminor .* distortion .*cos(p)) .* cos(t);
y = (Rmajor + aminor .* distortion .* cos(p)) .* sin(t);
z = aminor.* distortion .* sin(p);
surf(x, y, z)
The result of which is:
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…