在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
前言 Microsoft.AspNetCore.ConcurrencyLimiter AspNetCore3.0后增加的,用于传入的请求进行排队处理,避免线程池的不足. Queue策略 添加Nuget Install-Package Microsoft.AspNetCore.ConcurrencyLimiter public void ConfigureServices(IServiceCollection services) { services.AddQueuePolicy(options => { //最大并发请求数 options.MaxConcurrentRequests = 2; //请求队列长度限制 options.RequestQueueLimit = 1; }); services.AddControllers(); } public void Configure(IApplicationBuilder app, IWebHostEnvironment env) { //添加并发限制中间件 app.UseConcurrencyLimiter(); app.Run(async context => { Task.Delay(100).Wait(); // 100ms sync-over-async await context.Response.WriteAsync("Hello World!"); }); if (env.IsDevelopment()) { app.UseDeveloperExceptionPage(); } app.UseHttpsRedirection(); app.UseRouting(); app.UseAuthorization(); app.UseEndpoints(endpoints => { endpoints.MapControllers(); }); } 通过上面简单的配置,我们就可以将他引入到我们的代码中,从而做并发量限制,以及队列的长度;那么问题来了,他是怎么实现的呢? public static IServiceCollection AddQueuePolicy(this IServiceCollection services, Action<QueuePolicyOptions> configure) { services.Configure(configure); services.AddSingleton<IQueuePolicy, QueuePolicy>(); return services; } QueuePolicy采用的是SemaphoreSlim信号量设计,SemaphoreSlim、Semaphore(信号量)支持并发多线程进入被保护代码,对象在初始化时会指定 最大任务数量,当线程请求访问资源,信号量递减,而当他们释放时,信号量计数又递增。 /// <summary> /// 构造方法(初始化Queue策略) /// </summary> /// <param name="options"></param> public QueuePolicy(IOptions<QueuePolicyOptions> options) { _maxConcurrentRequests = options.Value.MaxConcurrentRequests; if (_maxConcurrentRequests <= 0) { throw new ArgumentException(nameof(_maxConcurrentRequests), "MaxConcurrentRequests must be a positive integer."); } _requestQueueLimit = options.Value.RequestQueueLimit; if (_requestQueueLimit < 0) { throw new ArgumentException(nameof(_requestQueueLimit), "The RequestQueueLimit cannot be a negative number."); } //使用SemaphoreSlim来限制任务最大个数 _serverSemaphore = new SemaphoreSlim(_maxConcurrentRequests); } ConcurrencyLimiterMiddleware中间件 /// <summary> /// Invokes the logic of the middleware. /// </summary> /// <param name="context">The <see cref="HttpContext"/>.</param> /// <returns>A <see cref="Task"/> that completes when the request leaves.</returns> public async Task Invoke(HttpContext context) { var waitInQueueTask = _queuePolicy.TryEnterAsync(); // Make sure we only ever call GetResult once on the TryEnterAsync ValueTask b/c it resets. bool result; if (waitInQueueTask.IsCompleted) { ConcurrencyLimiterEventSource.Log.QueueSkipped(); result = waitInQueueTask.Result; } else { using (ConcurrencyLimiterEventSource.Log.QueueTimer()) { result = await waitInQueueTask; } } if (result) { try { await _next(context); } finally { _queuePolicy.OnExit(); } } else { ConcurrencyLimiterEventSource.Log.RequestRejected(); ConcurrencyLimiterLog.RequestRejectedQueueFull(_logger); context.Response.StatusCode = StatusCodes.Status503ServiceUnavailable; await _onRejected(context); } } 每次当我们请求的时候首先会调用_queuePolicy.TryEnterAsync(),进入该方法后先开启一个私有lock锁,再接着判断总请求量是否≥(请求队列限制的大小+最大并发请求数),如果当前数量超出了,那么我直接抛出,送你个503状态; if (result) { try { await _next(context); } finally { _queuePolicy.OnExit(); } } else { ConcurrencyLimiterEventSource.Log.RequestRejected(); ConcurrencyLimiterLog.RequestRejectedQueueFull(_logger); context.Response.StatusCode = StatusCodes.Status503ServiceUnavailable; await _onRejected(context); } 问题来了,我这边如果说还没到你设置的大小呢,我这个请求没有给你服务器造不成压力,那么你给我处理一下吧.
lock (_totalRequestsLock) { if (TotalRequests >= _requestQueueLimit + _maxConcurrentRequests) { return false; } TotalRequests++; } //异步等待进入信号量,如果没有线程被授予对信号量的访问权限,则进入执行保护代码;否则此线程将在此处等待,直到信号量被释放为止 await _serverSemaphore.WaitAsync(); return true; } 返回成功后那么中间件这边再进行处理,_queuePolicy.OnExit();通过该调用进行调用_serverSemaphore.Release();释放信号灯,再对总请求数递减 Stack策略 再来看看另一种方法,栈策略,他是怎么做的呢?一起来看看.再附加上如何使用的代码. public void ConfigureServices(IServiceCollection services) { services.AddStackPolicy(options => { //最大并发请求数 options.MaxConcurrentRequests = 2; //请求队列长度限制 options.RequestQueueLimit = 1; }); services.AddControllers(); } 通过上面的配置,我们便可以对我们的应用程序执行出相应的策略.下面再来看看他是怎么实现的呢 public static IServiceCollection AddStackPolicy(this IServiceCollection services, Action<QueuePolicyOptions> configure) { services.Configure(configure); services.AddSingleton<IQueuePolicy, StackPolicy>(); return services; } 可以看到这次是通过StackPolicy类做的策略.来一起来看看主要的方法 /// <summary> /// 构造方法(初始化参数) /// </summary> /// <param name="options"></param> public StackPolicy(IOptions<QueuePolicyOptions> options) { //栈分配 _buffer = new List<ResettableBooleanCompletionSource>(); //队列大小 _maxQueueCapacity = options.Value.RequestQueueLimit; //最大并发请求数 _maxConcurrentRequests = options.Value.MaxConcurrentRequests; //剩余可用空间 _freeServerSpots = options.Value.MaxConcurrentRequests; } 当我们通过中间件请求调用,_queuePolicy.TryEnterAsync()时,首先会判断我们是否还有访问请求次数,如果_freeServerSpots>0,那么则直接给我们返回true,让中间件直接去执行下一步,如果当前队列=我们设置的队列大小的话,那我们需要取消先前请求;每次取消都是先取消之前的保留后面的请求; public ValueTask<bool> TryEnterAsync() { lock (_bufferLock) { if (_freeServerSpots > 0) { _freeServerSpots--; return _trueTask; } // 如果队列满了,取消先前的请求 if (_queueLength == _maxQueueCapacity) { _hasReachedCapacity = true; _buffer[_head].Complete(false); _queueLength--; } var tcs = _cachedResettableTCS ??= new ResettableBooleanCompletionSource(this); _cachedResettableTCS = null; if (_hasReachedCapacity || _queueLength < _buffer.Count) { _buffer[_head] = tcs; } else { _buffer.Add(tcs); } _queueLength++; // increment _head for next time _head++; if (_head == _maxQueueCapacity) { _head = 0; } return tcs.GetValueTask(); } } 当我们请求后调用_queuePolicy.OnExit();出栈,再将请求长度递减 public void OnExit() { lock (_bufferLock) { if (_queueLength == 0) { _freeServerSpots++; if (_freeServerSpots > _maxConcurrentRequests) { _freeServerSpots--; throw new InvalidOperationException("OnExit must only be called once per successful call to TryEnterAsync"); } return; } // step backwards and launch a new task if (_head == 0) { _head = _maxQueueCapacity - 1; } else { _head--; } //退出,出栈 _buffer[_head].Complete(true); _queueLength--; } } 总结 基于栈结构的特点,在实际应用中,通常只会对栈执行以下两种操作:
队列存储结构的实现有以下两种方式:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持极客世界。 |
请发表评论