在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
在游乐场、玻璃天桥、滑雪场等娱乐场所,经常能看到有摄影师在拍照片,令这些经营者发愁的一件事就是照片太多了,客户在成千上万张照片中找到自己可不是件容易的事。在一次游玩等活动或家庭聚会也同理,太多了照片导致挑选十分困难。 还好有 本文将使用 fa3a7bfd807ccd6b17cf559ad584cbaa 使用方法 首先安装 string key = "fa3a7bfd807ccd6b17cf559ad584cbaa"; // 替换为你的key using var fc = new FaceClient(new ApiKeyServiceClientCredentials(key)) { Endpoint = "https://southeastasia.api.cognitive.microsoft.com", }; 然后识别一张照片: using var file = File.OpenRead(@"C:\Photos\DSC_996ICU.JPG"); IList<DetectedFace> faces = await fc.Face.DetectWithStreamAsync(file); 其中返回的 [ { "FaceId": "9997b64e-6e62-4424-88b5-f4780d3767c6", "RecognitionModel": null, "FaceRectangle": { "Width": 174, "Height": 174, "Left": 62, "Top": 559 }, "FaceLandmarks": null, "FaceAttributes": null }, { "FaceId": "8793b251-8cc8-45c5-ab68-e7c9064c4cfd", "RecognitionModel": null, "FaceRectangle": { "Width": 152, "Height": 152, "Left": 775, "Top": 580 }, "FaceLandmarks": null, "FaceAttributes": null } ] 可见,该照片返回了两个 最后,通过 var faceIds = faces.Select(x => x.FaceId.Value).ToList(); GroupResult reslut = await fc.Face.GroupAsync(faceIds); 返回了一个 public class GroupResult { public IList<IList<Guid>> Groups { get; set; } public IList<Guid> MessyGroup { get; set; } // ... } 包含了一个 有了这个,就可以通过一小段简短的代码,将不同的人脸组,分别复制对应的文件夹中: void CopyGroup(string outputPath, GroupResult result, Dictionary<Guid, (string file, DetectedFace face)> faces) { foreach (var item in result.Groups .SelectMany((group, index) => group.Select(v => (faceId: v, index))) .Select(x => (info: faces[x.faceId], i: x.index + 1)).Dump()) { string dir = Path.Combine(outputPath, item.i.ToString()); Directory.CreateDirectory(dir); File.Copy(item.info.file, Path.Combine(dir, Path.GetFileName(item.info.file)), overwrite: true); } string messyFolder = Path.Combine(outputPath, "messy"); Directory.CreateDirectory(messyFolder); foreach (var file in result.MessyGroup.Select(x => faces[x].file).Distinct()) { File.Copy(file, Path.Combine(messyFolder, Path.GetFileName(file)), overwrite: true); } } 然后就能得到运行结果,如图,我传入了 还能有什么问题? 就两个 图片太大,需要压缩 毕竟要把图片上传到云服务中,如果上传网速不佳,流量会挺大,而且现在的手机、单反、微单都能轻松达到好几千万像素, 二来……其实
因此,如果图片太大,必须进行一定的压缩(当然如果图片太小,显然也没必要进行压缩了),使用 byte[] CompressImage(string image, int edgeLimit = 1920) { using var bmp = Bitmap.FromFile(image); using var resized = (1.0 * Math.Max(bmp.Width, bmp.Height) / edgeLimit) switch { var x when x > 1 => new Bitmap(bmp, new Size((int)(bmp.Size.Width / x), (int)(bmp.Size.Height / x))), _ => bmp, }; using var ms = new MemoryStream(); resized.Save(ms, ImageFormat.Jpeg); return ms.ToArray(); } 竖立的照片 相机一般都是 还好照片在拍摄后,都会保留 void HandleOrientation(Image image, PropertyItem[] propertyItems) { const int exifOrientationId = 0x112; PropertyItem orientationProp = propertyItems.FirstOrDefault(i => i.Id == exifOrientationId); if (orientationProp == null) return; int val = BitConverter.ToUInt16(orientationProp.Value, 0); RotateFlipType rotateFlipType = val switch { 2 => RotateFlipType.RotateNoneFlipX, 3 => RotateFlipType.Rotate180FlipNone, 4 => RotateFlipType.Rotate180FlipX, 5 => RotateFlipType.Rotate90FlipX, 6 => RotateFlipType.Rotate90FlipNone, 7 => RotateFlipType.Rotate270FlipX, 8 => RotateFlipType.Rotate270FlipNone, _ => RotateFlipType.RotateNoneFlipNone, }; if (rotateFlipType != RotateFlipType.RotateNoneFlipNone) { image.RotateFlip(rotateFlipType); } } 旋转后,我的照片如下: 这样竖拍的照片也能识别出来了。 并行速度 前文说过,一个文件夹可能会有成千上万个文件,一个个上传识别,速度可能慢了点,它的代码可能长这个样子: Dictionary<Guid, (string file, DetectedFace face)> faces = GetFiles(inFolder) .Select(file => { byte[] bytes = CompressImage(file); var result = (file, faces: fc.Face.DetectWithStreamAsync(new MemoryStream(bytes)).GetAwaiter().GetResult()); (result.faces.Count == 0 ? $"{file} not detect any face!!!" : $"{file} detected {result.faces.Count}.").Dump(); return (file, faces: result.faces.ToList()); }) .SelectMany(x => x.faces.Select(face => (x.file, face))) .ToDictionary(x => x.face.FaceId.Value, x => (file: x.file, face: x.face)); 要想把速度变化,可以启用并行上传,有了 Dictionary<Guid, (string file, DetectedFace face)> faces = GetFiles(inFolder) .AsParallel() // 加的就是这行代码 .Select(file => { byte[] bytes = CompressImage(file); var result = (file, faces: fc.Face.DetectWithStreamAsync(new MemoryStream(bytes)).GetAwaiter().GetResult()); (result.faces.Count == 0 ? $"{file} not detect any face!!!" : $"{file} detected {result.faces.Count}.").Dump(); return (file, faces: result.faces.ToList()); }) .SelectMany(x => x.faces.Select(face => (x.file, face))) .ToDictionary(x => x.face.FaceId.Value, x => (file: x.file, face: x.face)); 断点续传 也如上文所说,有成千上万张照片,如果一旦网络传输异常,或者打翻了桌子上的咖啡(谁知道呢?)……或者完全一切正常,只是想再做一些其它的分析,所有东西又要重新开始。我们可以加入下载中常说的“断点续传”机制。 其实就是一个缓存,记录每个文件读取的结果,然后下次运行时先从缓存中读取即可,缓存到一个 Dictionary<Guid, (string file, DetectedFace face)> faces = GetFiles(inFolder) .AsParallel() // 加的就是这行代码 .Select(file => { byte[] bytes = CompressImage(file); var result = (file, faces: fc.Face.DetectWithStreamAsync(new MemoryStream(bytes)).GetAwaiter().GetResult()); (result.faces.Count == 0 ? $"{file} not detect any face!!!" : $"{file} detected {result.faces.Count}.").Dump(); return (file, faces: result.faces.ToList()); }) .SelectMany(x => x.faces.Select(face => (x.file, face))) .ToDictionary(x => x.face.FaceId.Value, x => (file: x.file, face: x.face)); 注意代码下方有一个 使用时,只需只需在 var cache = new Cache<List<DetectedFace>>(); // 重点 Dictionary<Guid, (string file, DetectedFace face)> faces = GetFiles(inFolder) .AsParallel() .Select(file => (file: file, faces: cache.GetOrCreate(file, () => // 重点 { byte[] bytes = CompressImage(file); var result = (file, faces: fc.Face.DetectWithStreamAsync(new MemoryStream(bytes)).GetAwaiter().GetResult()); (result.faces.Count == 0 ? $"{file} not detect any face!!!" : $"{file} detected {result.faces.Count}.").Dump(); return result.faces.ToList(); }))) .SelectMany(x => x.faces.Select(face => (x.file, face))) .ToDictionary(x => x.face.FaceId.Value, x => (file: x.file, face: x.face)); 将人脸框起来 照片太多,如果活动很大,或者合影中有好几十个人,分出来的组,将长这个样子: 完全不知道自己的脸在哪,因此需要将检测到的脸框起来。 注意框起来的过程,也很有技巧,回忆一下,上传时的照片本来就是压缩和旋转过的,因此返回的 using var bmp = Bitmap.FromFile(item.info.file); HandleOrientation(bmp, bmp.PropertyItems); using (var g = Graphics.FromImage(bmp)) { using var brush = new SolidBrush(Color.Red); using var pen = new Pen(brush, 5.0f); var rect = item.info.face.FaceRectangle; float scale = Math.Max(1.0f, (float)(1.0 * Math.Max(bmp.Width, bmp.Height) / 1920.0)); g.ScaleTransform(scale, scale); g.DrawRectangle(pen, new Rectangle(rect.Left, rect.Top, rect.Width, rect.Height)); } bmp.Save(Path.Combine(dir, Path.GetFileName(item.info.file))); 使用我上面的那张照片,检测结果如下(有点像相机对焦时人脸识别的感觉): 1000个脸的限制
分组最简单的方法,就是使用 这里我使用的是 foreach (var buffer in faces .Buffer(1000) .Select((list, groupId) => (list, groupId)) { GroupResult group = await fc.Face.GroupAsync(buffer.list.Select(x => x.Key).ToList()); var folder = outFolder + @"\gid-" + buffer.groupId; CopyGroup(folder, group, faces); } 总结 文中用到的完整代码,全部上传了到我的博客数据 这个月我参加了上海的
总的来说,这个效果还挺不错,渣渣分辨率的照片的脸都被它找到了😂。 注意,不一定非得用 另外,如有离线人脸识别需求, 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持极客世界。 |
请发表评论