在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
一、前置知识详解 二、Spark SQL读写数据代码实战 import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.sql.*; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; import java.util.ArrayList; import java.util.List; public class SparkSQLLoadSaveOps { public static void main(String[] args) { SparkConf conf = new SparkConf().setMaster("local").setAppName("SparkSQLLoadSaveOps"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext = new SQLContext(sc); /** * read()是DataFrameReader类型,load可以将数据读取出来 */ DataFrame peopleDF = sqlContext.read().format("json").load("E:\\Spark\\Sparkinstanll_package\\Big_Data_Software\\spark-1.6.0-bin-hadoop2.6\\examples\\src\\main\\resources\\people.json"); /** * 直接对DataFrame进行操作 * Json: 是一种自解释的格式,读取Json的时候怎么判断其是什么格式? * 通过扫描整个Json。扫描之后才会知道元数据 */ //通过mode来指定输出文件的是append。创建新文件来追加文件 peopleDF.select("name").write().mode(SaveMode.Append).save("E:\\personNames"); } } 读取过程源码分析如下: /** * :: Experimental :: * Returns a [[DataFrameReader]] that can be used to read data in as a [[DataFrame]]. * {{{ * sqlContext.read.parquet("/path/to/file.parquet") * sqlContext.read.schema(schema).json("/path/to/file.json") * }}} * * @group genericdata * @since 1.4.0 */ @Experimental //创建DataFrameReader实例,获得了DataFrameReader引用 def read: DataFrameReader = new DataFrameReader(this) 2. 然后再调用DataFrameReader类中的format,指出读取文件的格式。 /** * Specifies the input data source format. * * @since 1.4.0 */ def format(source: String): DataFrameReader = { this.source = source this } 3. 通过DtaFrameReader中load方法通过路径把传入过来的输入变成DataFrame。 /** * Loads input in as a [[DataFrame]], for data sources that require a path (e.g. data backed by * a local or distributed file system). * * @since 1.4.0 */ // TODO: Remove this one in Spark 2.0. def load(path: String): DataFrame = { option("path", path).load() } 至此,数据的读取工作就完成了,下面就对DataFrame进行操作。 1. 调用DataFrame中select函数进行对列筛选 /** * Selects a set of columns. This is a variant of `select` that can only select * existing columns using column names (i.e. cannot construct expressions). * * {{{ * // The following two are equivalent: * df.select("colA", "colB") * df.select($"colA", $"colB") * }}} * @group dfops * @since 1.3.0 */ @scala.annotation.varargs def select(col: String, cols: String*): DataFrame = select((col +: cols).map(Column(_)) : _*) 2. 然后通过write将结果写入到外部存储系统中。 /** * :: Experimental :: * Interface for saving the content of the [[DataFrame]] out into external storage. * * @group output * @since 1.4.0 */ @Experimental def write: DataFrameWriter = new DataFrameWriter(this) 3. 在保持文件的时候mode指定追加文件的方式 /** * Specifies the behavior when data or table already exists. Options include: // Overwrite是覆盖 * - `SaveMode.Overwrite`: overwrite the existing data. //创建新的文件,然后追加 * - `SaveMode.Append`: append the data. * - `SaveMode.Ignore`: ignore the operation (i.e. no-op). * - `SaveMode.ErrorIfExists`: default option, throw an exception at runtime. * * @since 1.4.0 */ def mode(saveMode: SaveMode): DataFrameWriter = { this.mode = saveMode this } 4. 最后,save()方法触发action,将文件输出到指定文件中。 /** * Saves the content of the [[DataFrame]] at the specified path. * * @since 1.4.0 */ def save(path: String): Unit = { this.extraOptions += ("path" -> path) save() } 三、Spark SQL读写整个流程图如下 四、对于流程中部分函数源码详解 DataFrameReader.Load() 1. Load()返回DataFrame类型的数据集合,使用的数据是从默认的路径读取。 /** * Returns the dataset stored at path as a DataFrame, * using the default data source configured by spark.sql.sources.default. * * @group genericdata * @deprecated As of 1.4.0, replaced by `read().load(path)`. This will be removed in Spark 2.0. */ @deprecated("Use read.load(path). This will be removed in Spark 2.0.", "1.4.0") def load(path: String): DataFrame = { //此时的read就是DataFrameReader read.load(path) } 2. 追踪load源码进去,源码如下: /** * Loads input in as a [[DataFrame]], for data sources that require a path (e.g. data backed by * a local or distributed file system). * * @since 1.4.0 */ // TODO: Remove this one in Spark 2.0. def load(path: String): DataFrame = { option("path", path).load() } 3. 追踪load源码如下: /** * Loads input in as a [[DataFrame]], for data sources that don't require a path (e.g. external * key-value stores). * * @since 1.4.0 */ def load(): DataFrame = { //对传入的Source进行解析 val resolved = ResolvedDataSource( sqlContext, userSpecifiedSchema = userSpecifiedSchema, partitionColumns = Array.empty[String], provider = source, options = extraOptions.toMap) DataFrame(sqlContext, LogicalRelation(resolved.relation)) } DataFrameReader.format() 1. Format:具体指定文件格式,这就获得一个巨大的启示是:如果是Json文件格式可以保持为Parquet等此类操作。 /** * Specifies the input data source format.Built-in options include “parquet”,”json”,etc. * * @since 1.4.0 */ def format(source: String): DataFrameReader = { this.source = source //FileType this } DataFrame.write() 1. 创建DataFrameWriter实例 /** * :: Experimental :: * Interface for saving the content of the [[DataFrame]] out into external storage. * * @group output * @since 1.4.0 */ @Experimental def write: DataFrameWriter = new DataFrameWriter(this) 1 2. 追踪DataFrameWriter源码如下: /** * :: Experimental :: * Interface used to write a [[DataFrame]] to external storage systems (e.g. file systems, * key-value stores, etc). Use [[DataFrame.write]] to access this. * * @since 1.4.0 */ @Experimental final class DataFrameWriter private[sql](df: DataFrame) { DataFrameWriter.mode() 1. Overwrite是覆盖,之前写的数据全都被覆盖了。 /** * Specifies the behavior when data or table already exists. Options include: * - `SaveMode.Overwrite`: overwrite the existing data. * - `SaveMode.Append`: append the data. * - `SaveMode.Ignore`: ignore the operation (i.e. no-op). //默认操作 * - `SaveMode.ErrorIfExists`: default option, throw an exception at runtime. * * @since 1.4.0 */ def mode(saveMode: SaveMode): DataFrameWriter = { this.mode = saveMode this } 2. 通过模式匹配接收外部参数 /** * Specifies the behavior when data or table already exists. Options include: * - `overwrite`: overwrite the existing data. * - `append`: append the data. * - `ignore`: ignore the operation (i.e. no-op). * - `error`: default option, throw an exception at runtime. * * @since 1.4.0 */ def mode(saveMode: String): DataFrameWriter = { this.mode = saveMode.toLowerCase match { case "overwrite" => SaveMode.Overwrite case "append" => SaveMode.Append case "ignore" => SaveMode.Ignore case "error" | "default" => SaveMode.ErrorIfExists case _ => throw new IllegalArgumentException(s"Unknown save mode: $saveMode. " + "Accepted modes are 'overwrite', 'append', 'ignore', 'error'.") } this } DataFrameWriter.save() 1. save将结果保存传入的路径。 /** * Saves the content of the [[DataFrame]] at the specified path. * * @since 1.4.0 */ def save(path: String): Unit = { this.extraOptions += ("path" -> path) save() } 2. 追踪save方法。 /** * Saves the content of the [[DataFrame]] as the specified table. * * @since 1.4.0 */ def save(): Unit = { ResolvedDataSource( df.sqlContext, source, partitioningColumns.map(_.toArray).getOrElse(Array.empty[String]), mode, extraOptions.toMap, df) } 3. 其中source是SQLConf的defaultDataSourceName // This is used to set the default data source val DEFAULT_DATA_SOURCE_NAME = stringConf("spark.sql.sources.default", defaultValue = Some("org.apache.spark.sql.parquet"), doc = "The default data source to use in input/output.") DataFrame.scala中部分函数详解: 1. toDF函数是将RDD转换成DataFrame /** * Returns the object itself. * @group basic * @since 1.3.0 */ // This is declared with parentheses to prevent the Scala compiler from treating // `rdd.toDF("1")` as invoking this toDF and then apply on the returned DataFrame. def toDF(): DataFrame = this 2. show()方法:将结果显示出来 /** * Displays the [[DataFrame]] in a tabular form. For example: * {{{ * year month AVG('Adj Close) MAX('Adj Close) * 1980 12 0.503218 0.595103 * 1981 01 0.523289 0.570307 * 1982 02 0.436504 0.475256 * 1983 03 0.410516 0.442194 * 1984 04 0.450090 0.483521 * }}} * @param numRows Number of rows to show * @param truncate Whether truncate long strings. If true, strings more than 20 characters will * be truncated and all cells will be aligned right * * @group action * @since 1.5.0 */ // scalastyle:off println def show(numRows: Int, truncate: Boolean): Unit = println(showString(numRows, truncate)) // scalastyle:on println 追踪showString源码如下:showString中触发action收集数据。 /** * Compose the string representing rows for output * @param _numRows Number of rows to show * @param truncate Whether truncate long strings and align cells right */ private[sql] def showString(_numRows: Int, truncate: Boolean = true): String = { val numRows = _numRows.max(0) val sb = new StringBuilder val takeResult = take(numRows + 1) val hasMoreData = takeResult.length > numRows val data = takeResult.take(numRows) val numCols = schema.fieldNames.length 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持极客世界。 |
请发表评论