• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

基于SQL Server OS的任务调度机制详解

原作者: [db:作者] 来自: [db:来源] 收藏 邀请
简介

     SQL Server OS是在Windows之上,用于服务SQL Server的一个用户级别的操作系统层次。它将操作系统部分的功能从整个SQL Server引擎中抽象出来,单独形成一层,以便为存储引擎提供服务。SQL Server OS主要提供了任务调度、内存分配、死锁检测、资源检测、锁管理、Buffer Pool管理等多种功能。本篇文章主要是谈一谈SQL OS中所提供的任务调度机制。

抢占式(Preemptive)调度与非抢占式(non-Preemptive)调度

    数据库层面的任务调度的起源是ACM上的一篇名为“Operating System Support for Database Management”。但是对于Windows来说,在操作系统层面专门加入支持数据库的任务调度,还不如在SQL Server中专门抽象出来一层进行调度,既然可以抽象出来一层进行数据库层面的任务调度,那么何不在这个抽象层进行内存和IO等的管理呢?这个想法,就是SQL Server OS的起源。

    在Windows NT4之后,Windows任务调度是抢占式的,也就是说Windows任务是根据任务的优先级和时间片来决定。如果一个任务的时间片用完,或是有更高优先级的任务正在等待,那么操作系统可以强制剥夺正在运行的线程(线程是任务调度的基本单位)所占用的CPU,将CPU资源让给其它线程。

    但是对于SQL Server来说,这种非合作式的、基于时间片的任务调度机制就不那么合适了。如果SQL Server使用Windows内的任务调度机制来进行任务调度的话,Windows不会根据SQL Server的调度机制进行优化,只是根据时间片和优先级来中断线程,这会导致如下两个缺陷:

Windows不会知道SQL Server中任务(也就是SQL OS中的Task,会在文章后面讲到)的最佳中断点,这势必会造成更多的Context Switch(Context Switch代价非常非常高昂,需要线程字用户态和核心态之间转换),因为Windows调度不是线程本身决定是否该出让CPU,而是由Windows决定。Windows并不会知道当前数据库中对应的线程是否正在做关键任务,只会不分青红皂白的夺取线程的CPU。 连入SQL Server的连接不可能一直在执行,每一个Batch之间会有大量空闲时间。如果每个连接都需要单独占用一个线程,那么SQL Server维护这些线程就需要消耗额外的资源,这是很不明智的。

     而对于SQL Server OS来说,线程调度采用的合作模式而不是抢占模式。这是因为这些数据库内的任务都在SQL Server这个SandBox之内,SQL Server充分相信其内线程,所以除非线程主动放弃CPU,SQL Server OS不会强制剥夺线程的CPU。这样一来,虽然Worker之间的切换依然是通过Windows的Context Switch进行,但这种合作模式会大大减少所需Context Switch的次数。

    SQL Server决定哪一个时间点哪一个线程运行,是通过一个叫Scheduler的东西进行的,下面让我们来看Scheduler。

Scheduler

    SQL Server中每一个逻辑CPU都有一个与之对应的Scheduler,只有拿到Scheduler所有权的任务才允许被执行,Scheduler可以看做一个队SQLOS来说的逻辑CPU。您可以通过sys.dm_os_schedulers这个DMV来看系统中所有的Scheduler,如图1所示。
 

    图1.查看sys.dm_os_schedulers

   我的笔记本是一个i7四核8线程的CPU,对应的,可以看到除了DAC和运行系统任务的HIDDEN Scheduler,剩下的Scheduler一共8个,每个对应一个逻辑CPU,用于处理内部Task。当然,您也可以通过设置Affinity来将某些Scheduler Offline,如图2所示。注意,这个过程是在线的,无需重启SQL Server就能实现。

    图2.设置Affinity

    此时,无需重启实例就能看到4个Scheduler被Offline,如图3所示:
 

    图3.在线Offline 4个Scheduler

    一般来说,除非您的服务器上运行其他实例或程序,否则不需要控制Affinity。

    在图1中,我们还注意到,除了Visible的Scheduler之外,还有一些特殊的Scheduler,这些Scheduler的ID都大于255,这类Scheduler都用于系统内部使用,比如说资源管理、DAC、备份还原操作等。另外,虽然Scheduler和逻辑CPU的个数一致,但这并不意味着Scheduler和固定的逻辑CPU相绑定,而是Scheduler可以在任何CPU上运行,只有您设置了Affinity Mask之后,Scheduler才会被固定在某个CPU上。这样的一个好处是,当一个Scheduler非常繁忙时,可能不会导致只有一个物理CPU繁忙,因为Scheduler会在多个CPU之间移动,从而使得CPU的使用倾向于平均。

    这意味着对于一个比较长的查询,可以前半部分在CPU0上执行,而后半部分在CPU1上执行。

    另外,在每一个Scheduler上,同一时间只能有一个Worker运行,所有的资源都就绪但没有拿到Scheduler,那么这个Worker就处于Runnable状态。下面让我们来看一看Worker。

Worker

    每一个Worker可以看做是对应一个线程(或纤程),Scheduler不会直接调度线程,而是调度Worker。Worker会随着负载的增加而增加,换句话说,Worker是按需增加,直到增加到最大数字。在SQL Server中,默认的Worker最大数是由SQL Server进行管理的。根据32位还是64位,以及CPU的数量来设置最大Worker,具体的计算公式,您可以参阅BOL:http://msdn.microsoft.com/zh-cn/library/ms187024(v=sql.105).aspx。当然您也可以设置最大Worker数量,如图4所示。

   

    图4.设置最大Worker数量  

    如果是自动配置,那么SQL Server的最大工作线程数量可以在sys.dm_os_sys_info中看到,如图5所示。

     

     图5.查看自动配置的最大Worker数量

    一般来说,这个值您都无需进行设置,但也有一些情况,需要设置这个值。那就是Worker线程用尽,此时除了DAC之外,您甚至无法连入SQL Server。

    Worker实际上会对应Windows上的一个线程,并与某个特定Scheduler绑定,每一个Worker只要开始执行Task,除非Task完成,否则Worker永远不会放弃这个Task,如果一个Task在运行过程由于锁、IO等陷入等待,那么实际上Worker就会陷入等待。

    此外,同一个连接内的多个Batch之间倾向于使用同一个Worker,比如第一个Batch使用了Worker 100,那么第二个Batch也同样倾向于是用Worker 100,但这并不绝对。

    正在运行的任务所是用的Worker,我们可以通过DMV sys.dm_exec_requests查看正在运行的任务,其中的Task_Address列可以看到正在运行的Task,再通过sys.dm_os_tasks的Worker_Address来查看对应的Worker。

    SQL Server会为每一个Worker保留大约2M左右的内存,对于每一个Scheduler上所能有的Worker数量是服务器的最大Worker数量/在线的Scheduler,每一个Scheduler所绑定的Worker会形成Worker池,这意味着每一个Scheduler需要Worker时,首先在Worker池中中查找空闲的Worker,如果没有空闲的Worker时,才会创建新的Worker。这个行为会和连接池类似。

    那么当一个Scheduler空闲超过15分钟,或是Windows面临内存压力时。SQL Server就会尝试Trim这个Worker池来释放被Worker所占用的内存。

Task

    Task是Worker上运行的最小任务单元。只能拿到Worker的Task才能够运行。我们可以看下面一个简单的例子,如代码1所示。

SELECT @@VERSION goSELECT @@SPID go

    代码1.一个连接上的两个Batch

    代码1中的两个Batch属于一个连接,每一个Batch中都是一个简单的Task,如我们前面所说,这两个Task更倾向于复用同一个Worker,因为他们属于同一个连接。但也有可能,这两个Task使用了不同的Worker,甚至是不同的Scheduler。

    除了用户所用的Task之外,还有一些永久的系统Task,这类Task会永远占据Worker,这些Task包括死锁检测、Lazy Writer等。

Task在Scheduler上的平均分配

    新的Task还会尝试在Scheduler之间平均分配,可以通过sys.dm_os_schedulers来看到一个load_factor列,这列的值就是用于供Task向Scheduler进行分配时,用来参考。

    每次一个新的Task进入Node时,会选择负载最少的的Scheduler。但是,如果每次都来做一次选择,那么就会在Task入队时造成瓶颈(这个瓶颈类似于TempDB SGAM页争抢)。因此SQL OS对于每一个连接,都会记住上次运行的Scheduler ID,在新的Task进入时作为提示(Hint)。但如果一个Scheduler的负载大于所有Scheduler平均值的20%,则会忽略这个提示。负载可以通过上面提到的load_factor列来看,对于某个Task运行的时间比较长,则很有可能造成Scheduler上Task分配的不均匀。

Worker的Yield

    由于SQL Server是非抢占式调度,那么就不能为了完成某个Task,让Worker占据Scheduler一直运行。如果是这样,那么处于Runnable的Worker将会饥饿,这不利于大量并发,也违背了SQL OS调度的初衷。

    因此,在合适的时间点让出Scheduler就是关键。Worker让出CPU使得其它Worker可以运行的过程称之为yield。yield大体可分为两种,一种是所谓的“natural yield”,这种方式是Worker在运行过程中被锁或是某些资源阻塞,此时,该Worker就会让出Scheduler来让其它Worker运行。另外一种情况是Worker没有遇到阻塞,但在时间片到了之后,主动让出Scheduler,这就是所谓的“voluntarily yield”,这也就是SOS_SCHEDULER_YIELD等待类型的由来,一个Worker由RUNNING状态转到WAITING状态的过程被称之为switching。SQL OS的一个基本思想就是,要多进行switching,来保证高并发。下面我们来看几种常见的yield场景:

基于时间片的voluntarily yield大概使得Worker每4秒yield一次。这个值可以通过sys.dm_os_schedulers的quantum_length_us列看到。
每64K结果集排序,就做一次yield。
语句complie,会做yield。
读取数据页时
batch中每一句话做完,就会做一次yield。
如果客户端不能及时取走数据,worker也会做yield。

SQL Server OS中的抢占式任务调度
    对于一些代码来说,SQL Server会存在一些抢占式代码。如果您在等待类型中看到“PREEMPTIVE_*”类型的等待,说明这里面的代码正在运行在抢占式任务调度模式。这类任务包括扩展存储过程、调用Windows API、日志增长(日志填0)。我们知道,合作式的任务调度需要任务本身Yield,但这类代码在SQL Server 之外,如果让他们运行在合作式任务调度这个SandBox之内,这类代码如果不yield,则会永远占用Scheduler。这是非常危险的。

    因此,在进入抢占式模式之前,首先需要将Scheduler的控制权交给在Runable队列中的下一个Worker。此时,抢占式模式运行的代码不再由SQL OS控制,转而由Windows任务调度系统控制。因此一个Task的生命周期如果再加上转到抢占式任务调度模式,则会如图6所示

  
 图6.一个Task完整的生命周期

每一个Scheduler的任务调度

    对于每一个Scheduler的调度,一个简单的模型如图7所示。   

图7.一个Scheduler的调度周期模型

小结
    SQL Server OS在Windows之上抽象出一套非抢占式的任务调度机制,从而减少了Context Switch。同时,又有一套线程自己的yield机制,相比Windows随机抢占数据库之内的线程而言,让线程自己来yield则会大量减少Context Switch,从而提升了并发性。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
在SQL Server中实现最短路径搜索的解决方法发布时间:2022-02-08
下一篇:
SQLite数据库管理相关命令的使用介绍发布时间:2022-02-08
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap