在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
某大师曾说过,像了解自己的老婆 一样了解自己管理的数据库,个人认为包含了两个方面的了解: 1,在稳定性层面来说,更多的是关注高可用、读写分离、负载均衡,灾备管理等等high level层面的措施(就好比要保证生活的稳定性) 2,在实例级别的来说,需要关注内存、IO、网络,热点表,热点索引,top sql,死锁,阻塞,历史上执行异常的SQL(好比生活品质细节)MySQL的performance_data库和sys库提供了非常丰富的系统日志数据,可以帮助我们更好地了解非常细节的,这里简单地列举出来了一些常用的数据。 sys库是以较为可读化的方式封装了 这里粗略列举出个人常用的一些系统数据,可以在实例级别更加清楚地了解MySQL的运行过程中资源分配情况。 Status中的信息 MySQL的status变量只是给出了一个总的信息,从status变量上无法得知详细资源的消耗,比如IO或者内存的热点在哪里,库、表的热点在哪里,如果想要知道具体的明细信息就需要系统库中的数据。 前提要开启 内存使用: 内存/innodb_buffer_pool使用 概要innodb_buffer_pool的使用情况summary,已知当前实例262144*16/1024 = 4096MB buffer pool,已使用23260*16/1024 363MB innodb_buffer_pool已占用内存的明细信息,可以按照库\表的维度来统计 SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED ; SELECT database_name, SUM(compressed_size)/1024/1024 AS allocated_memory, SUM(data_size)/1024/1024 AS data_memory, SUM(is_hashed)*16/1024 AS is_hashed_memory, SUM(is_old)*16/1024 AS is_old_memory FROM ( SELECT case when INSTR(TABLE_NAME,'.')>0 then replace(SUBSTRING(TABLE_NAME,1,INSTR(TABLE_NAME,'.')-1),'`','') else 'system_database' end as database_name, case when INSTR(TABLE_NAME,'.')>0 then replace(SUBSTRING(TABLE_NAME,INSTR(TABLE_NAME,'.')+1),'`','') ELSE 'system_obj' END AS table_name, if(compressed_size = 0, 16384, compressed_size) AS compressed_size, data_size, if(is_hashed = 'YES',1,0) is_hashed, if(is_old = 'YES',1,0) is_old FROM information_schema.innodb_buffer_page WHERE TABLE_NAME IS NOT NULL ) t GROUP BY database_name ORDER BY allocated_memory DESC LIMIT 10; 库\表的读写统计,逻辑层面的热点数据统计 目标表是 基于表的读写的行的次数统计,这是一个累计值,单纯的看这个值本身,个人觉得意义不大,需要定时收集计算差值,才具备参考意义。 以下按照库级别统计表的读写情况。 库\表的读写统计,物理IO层面的热点数据统计 按照物理IO的维度统计热点数据,哪些库\表消耗了多少物理IO。这里原始系统表中的数据是一个累计统计的值,最极端的情况就是一个表为0行,却存在大量的物理读写IO。 SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED ; SELECT database_name, IFNULL(cast(sum(total_read) as signed),0) AS total_read, IFNULL(cast(sum(total_written) as signed),0) AS total_written, IFNULL(cast(sum(total) AS SIGNED),0) AS total_read_written FROM ( SELECT substring(REPLACE(file, '@@datadir/', ''),1,instr(REPLACE(file, '@@datadir/', ''),'/')-1) AS database_name, count_read, case when instr(total_read,'KiB')>0 then replace(total_read,'KiB','')/1024 when instr(total_read,'MiB')>0 then replace(total_read,'MiB','')/1024 when instr(total_read,'GiB')>0 then replace(total_read,'GiB','')*1024 END AS total_read, case when instr(total_written,'KiB')>0 then replace(total_written,'KiB','')/1024 when instr(total_written,'MiB')>0 then replace(total_written,'MiB','') when instr(total_written,'GiB')>0 then replace(total_written,'GiB','')*1024 END AS total_written, case when instr(total,'KiB')>0 then replace(total,'KiB','')/1024 when instr(total,'MiB')>0 then replace(total,'MiB','') when instr(total,'GiB')>0 then replace(total,'GiB','')*1024 END AS total from sys.io_global_by_file_by_bytes WHERE FILE LIKE '%@@datadir%' AND instr(REPLACE(file, '@@datadir/', ''),'/')>0 )t GROUP BY database_name ORDER BY total_read_written DESC; ps:个人不太喜欢MySQL自定义的format_***函数,这个函数的初衷是好的,把一些数据(时间,存储空间)等格式化成更加可读的模式。但是却不支持单位的参数,更多的时候想以某个固定的单位来显示,比如格式化一个的时间,格式化后根据单位大小可能会显示微妙,或者是毫秒,或者是秒,或者分钟,或者天。比如想把时间统一格式化成秒,对不起,不支持,某些个数据不仅仅是看一眼那么简单,甚至是要读出来存档分析的,因此这里不建议也不会使用那些个format函数 TOP SQL 统计 可以按照执行时间,阻塞时间,返回行数等等维度统计top sql。 SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED ; SELECT schema_name, digest_text, count_star, avg_timer_wait/1000000000000 AS avg_timer_wait, max_timer_wait/1000000000000 AS max_timer_wait, sum_lock_time/count_star/1000000000000 AS avg_lock_time , sum_rows_affected/count_star AS avg_rows_affected, sum_rows_sent/count_star AS avg_rows_sent , sum_rows_examined/count_star AS avg_rows_examined, sum_created_tmp_disk_tables/count_star AS avg_create_tmp_disk_tables, sum_created_tmp_tables/count_star AS avg_create_tmp_tables, sum_select_full_join/count_star AS avg_select_full_join, sum_select_full_range_join/count_star AS avg_select_full_range_join, sum_select_range/count_star AS avg_select_range, sum_select_range_check/count_star AS avg_select_range, first_seen, last_seen FROM performance_schema.events_statements_summary_by_digest WHERE last_seen>date_add(NOW(), interval -1 HOUR) ORDER BY max_timer_wait -- avg_timer_wait -- sum_rows_affected/count_star -- sum_lock_time/count_star -- avg_lock_time -- avg_rows_sent DESC limit 10; 需要注意的是,这个统计是按照MySQL执行一个事务消耗的资源做统计的,而不是一个语句,笔者一开始懵逼了一阵子,举个简单的例子。 参考如下,这里是循环写个数据的一个存储过程,调用方式就是 但是在查询的时候,始终没有发现这个存储过程的调用被列为TOP SQL,后面尝试在存储过程内部加了一个事物,然后就顺利地收集到了整个TOP SQL. 因此说 CREATE DEFINER=`root`@`%` PROCEDURE `create_test_data`( IN `loopcnt` INT ) LANGUAGE SQL NOT DETERMINISTIC CONTAINS SQL SQL SECURITY DEFINER COMMENT '' BEGIN -- START TRANSACTION; while loopcnt>0 do insert into test_mrr(rand_id,create_date) values (RAND()*100000000,now(6)); set loopcnt=loopcnt-1; end while; -- commit; END 另外一点比较有意思的是,这个系统表是为数不多的支持truncate的,当然它在内部,也是在不断收集的一个过程。 执行失败的SQL 统计 一直以为系统不会记录执行失败的\解析错误的SQL,比如想统计因为超时而执行失败的语句,后面才发现,这些信息,MySQL会完整地记录下来 这里会详细记录执行错误的语句,包括最终执行失败(超时之类的),语法错误,执行过程中产生了警告之类的语句。用 SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED ; select schema_name, digest_text, count_star, first_seen, last_seen from performance_schema.events_statements_summary_by_digest where sum_errors>0 or sum_warnings>0 order by last_seen desc; Index使用情况统计 基于 可以按照哪些索引使用最多\最少等情况进行统计。 不过这个统计有一个给人潜在一个误区: 如果使用到了该索引,但是没有数据受影响(就是没有DML语句的条件没有命中数据),将count_***不会统计进来,但是sum_timer_wait会统计进来 等待事件统计 MySQL数据库中的任何一个动作,都需要等待(一定的时间来完成),一共有超过1000个等待事件,分属不懂的类别,每个版本都不一样,且默认不是所有的等待事件都启用。 个人认为等待事件这个东西,仅做参考,不具备问题的诊断性,即便是再优化或者低负载的数据库,累计一段时间,某些事件仍旧会积累大量的等待事件。 这些事件的等待事件,不一定都是负面性的,比如事物的锁等待,是在并发执行过程中必然会生成的,这个等待事件的统计结果,也是累计的,单纯的看一个直接的值,不具备任何参考意义。 SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED ; SELECT SUBSTRING_INDEX(NAME, '/', 1) as wait_type,COUNT(1) FROM performance_schema.setup_instruments GROUP BY 1 ORDER BY 2 DESC; SELECT event_name, count_star, sum_timer_wait FROM performance_schema.events_waits_summary_global_by_event_name WHERE event_name != 'idle' order by sum_timer_wait desc limit 100; 最后,需要注意的是, 1,MySQL提供的诸多的系统表(视图)中的数据,单纯的看这个值本身,因为它是一个累计值,个人觉得意义不大,尤其是avg_***,需要结合多方面的综合因素,做参考使用。 总结 以上所述是小编给大家介绍的利用MySQL系统数据库做性能负载诊断的方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对极客世界网站的支持! |
请发表评论