在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
前言 最近在写项目的时候遇到一个问题,使用mongodb记录了用例的执行结果,但是在时间的记录上使用的是date格式,现在有一个需求,以天为单位,统计一下每天成功的用例和失败的用例,说到统计,肯定是要用到聚合查询,但是如果以date格式的时间为group依据,那么等同于没有分组,因为在记录用例的时间几乎不可能同时,今天查阅了一下相关文档,可以使用mongodb的$dateToString命令来完成这个需求 问题来源 假如我们以如下的数据 /* 1 */ { "_id" : ObjectId("5d24c09651a456efbc231669"), "time" : ISODate("2019-07-08T10:12:35.125Z"), "result" : "Pass" } /* 2 */ { "_id" : ObjectId("5d24c09e51a456efbc23166a"), "time" : ISODate("2019-07-08T10:12:36.125Z"), "result" : "Pass" } ... ... /* 10 */ { "_id" : ObjectId("5d24c0d851a456efbc231672"), "time" : ISODate("2019-07-06T10:10:52.125Z"), "result" : "Pass" } /* 11 */ { "_id" : ObjectId("5d24c0e751a456efbc231673"), "time" : ISODate("2019-07-06T10:10:52.125Z"), "result" : "Fail" } 我的预期结果是
如果按照以前的聚合方式,通过$time来分组,由于每个时间都不相同,所以这样的聚合就相当于没有聚合 #coding:utf-8 from pymongo import MongoClient client = MongoClient(host=['%s:%s'%("127.0.0.1",27017)]) G_mongo = client['test'] pipeline = [ {'$group': {'_id': '$time', 'count': {'$sum': 1}}}, ] for i in G_mongo['test'].aggregate(pipeline): print(i) 得到的结果
可以看到,由于$time上的时间,谁和谁都不一样,所以如果以$time为分组对象的话每个统计都是1。 问题的解决 在分组的时候有一个$dateToString指令,可以将日期格式的值转化为字符串,比如这里因为需求是要以天为单位,所以我将其转为 {'$group': {'_id': {"$dateToString":{'format':'%Y-%m-%d','date':'$time'}}, 'count': {'$sum': 1}}} $dateToString的说明文档可以访问https://docs.mongodb.com/manual/reference/operator/aggregation/dateToString/ 查看,简单介绍一个 { $dateToString: { date: <dateExpression>, format: <formatString>, timezone: <tzExpression>, onNull: <expression> } } 它需要四个参数,只有date参数是必须的,指定数据来源,format是转化的格式,timezone为时区,onNull是如果日期值不存在时返回的值。 #coding:utf-8 from pymongo import MongoClient client = MongoClient(host=['%s:%s'%("127.0.0.1",27017)]) G_mongo = client['test'] pipeline = [ # {'$group': {'_id': '$time', 'count': {'$sum': 1}}}, {'$group': {'_id': {"$dateToString":{'format':'%Y-%m-%d','date':'$time'}}, 'count': {'$sum': 1}}} ] for i in G_mongo['test'].aggregate(pipeline): print(i) 上面代码执行的结果如下
这个看起来还不错,但是离我的目标还差一点,因为它还没有按照用例执行结果进行分组,再以天进行倒序排列 #coding:utf-8 from pymongo import MongoClient client = MongoClient(host=['%s:%s'%("127.0.0.1",27017)]) G_mongo = client['test'] pipeline = [ # {'$group': {'_id': '$time', 'count': {'$sum': 1}}}, {'$group': {'_id': {'date':{"$dateToString":{'format':'%Y-%m-%d','date':'$time'}},'result':'$result'}, 'count': {'$sum': 1}}}, {'$sort':{"_id.date":-1}} ] for i in G_mongo['test'].aggregate(pipeline): print(i) 得到的结果如下
查看文档,除了使用$dateToString指令还可以使用$dayOfMonth指令 pipeline = [ {'$group': {'_id': {'date':{"$dayOfMonth":{'date':'$time'}},'result':'$result'}, 'count': {'$sum': 1}}}, {'$sort':{"_id.date":-1}}, ] 但是这个指令只能适用于单一月份,如果两个月就会有交集,如7月6号和6月6号的会聚合到一起
所以需要根据需求灵活的使用各种指令。 总结 以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对极客世界的支持。 |
请发表评论