在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
一、索引基本知识
|
语句 | 索引是否发挥作用 |
---|---|
where a=3 | 是,只使用了a |
where a=3 and b=5 | 是,使用了a,b |
where a =3 and b = 5 and c= 4 | 是,使用了a,b,c |
where a = 3 or c = 4 | 否 |
where a = 3 and c= 4 | 是,仅使用了a |
where a = 3 and b > 10 and c = 7 | 是,使用了a,b |
where a = 3 and b like '%mxn%' and c=7 | 使用了a |
不是单独的索引类型,而是一种数据存储方式,指的是数据行跟相邻的键值紧凑的存储在一起,将数据存储与索引放到了一块,找到索引也就找到了数据
如果没有定义主键,InnoDB会选择一个唯一的非空索引代替。如果没有唯一索引,InnoDB会隐式定义一个主键来作为聚簇索引。InnoDB 只聚集在同一个页面中的记录。包含相邻键值的页面可能相距甚远。
数据文件跟索引文件分开存放,将数据存储于索引分开结构,索引结构的叶子节点指向了数据的对应行,myisam通过key_buffer把索引先缓存到内存中,当需要访问数据时(通过索引访问数据),在内存中直接搜索索引,然后通过索引找到磁盘相应数据,这也就是为什么索引不在key buffer命中时,速度慢的原因
通过叶子节点指针找到数据页中的数据,所以非聚簇索引是逻辑顺序
1、索引条目通常远小于数据行大小,如果只需要读取索引,那么mysql就会极大的较少数据访问量
2、因为索引是按照列值顺序存储的,所以对于IO密集型的范围查询会比随机从磁盘读取每一行数据的IO要少的多
3、一些存储引擎如MYISAM在内存中只缓存索引,数据则依赖于操作系统来缓存,因此要访问数据需要一次系统调用,这可能会导致严重的性能问题
4、由于INNODB的聚簇索引,覆盖索引对INNODB表特别有用
1、当发起一个被索引覆盖的查询时,在explain的extra列可以看到using index的信息,此时就使用了覆盖索引
2、在大多数存储引擎中,覆盖索引只能覆盖那些只访问索引中部分列的查询。不过,可以进一步的进行优化,可以使用innodb的二级索引来覆盖查询。
例如:actor使用innodb存储引擎,并在last_name字段有二级索引,虽然该索引的列不包括主键actor_id,但也能够用于对actor_id做覆盖查询
当使用索引列进行查询的时候尽量不要使用表达式,把计算放到业务层而不是数据库层
尽量使用主键查询,而不是其他索引,因为主键查询不会触发回表查询
使用前缀索引
>有时候需要索引很长的字符串,这会让索引变的大且慢,通常情况下可以使用某个列开始的部分字符串,这样大大的节约索引空间,从而提高索引效率,但这会降低索引的选择性,索引的选择性是指不重复的索引值和数据表记录总数的比值,范围从1/#T到1之间。索引的选择性越高则查询效率越高,因为选择性更高的索引可以让mysql在查找的时候过滤掉更多的行。
一般情况下某个列前缀的选择性也是足够高的,足以满足查询的性能,但是对应BLOB,TEXT,VARCHAR类型的列,必须要使用前缀索引,因为mysql不允许索引这些列的完整长度,使用该方法的诀窍在于要选择足够长的前缀以保证较高的选择性,通过又不能太长。
--创建数据表 create table citydemo(city varchar(50) not null); insert into citydemo(city) select city from city; --重复执行5次下面的sql语句 insert into citydemo(city) select city from citydemo; --更新城市表的名称 update citydemo set city=(select city from city order by rand() limit 1); --查找最常见的城市列表,发现每个值都出现45-65次, select count(*) as cnt,city from citydemo group by city order by cnt desc limit 10; --查找最频繁出现的城市前缀,先从3个前缀字母开始,发现比原来出现的次数更多,可以分别截取多个字符查看城市出现的次数 select count(*) as cnt,left(city,3) as pref from citydemo group by pref order by cnt desc limit 10; select count(*) as cnt,left(city,7) as pref from citydemo group by pref order by cnt desc limit 10; --此时前缀的选择性接近于完整列的选择性 --还可以通过另外一种方式来计算完整列的选择性,可以看到当前缀长度到达7之后,再增加前缀长度,选择性提升的幅度已经很小了 select count(distinct left(city,3))/count(*) as sel3, count(distinct left(city,4))/count(*) as sel4, count(distinct left(city,5))/count(*) as sel5, count(distinct left(city,6))/count(*) as sel6, count(distinct left(city,7))/count(*) as sel7, count(distinct left(city,8))/count(*) as sel8 from citydemo; --计算完成之后可以创建前缀索引 alter table citydemo add key(city(7)); --注意:前缀索引是一种能使索引更小更快的有效方法,但是也包含缺点:mysql无法使用前缀索引做order by 和 group by。
使用索引扫描来排序
mysql有两种方式可以生成有序的结果:通过排序操作或者按索引顺序扫描,如果explain出来的type列的值为index,则说明mysql使用了索引扫描来做排序
扫描索引本身是很快的,因为只需要从一条索引记录移动到紧接着的下一条记录。但如果索引不能覆盖查询所需的全部列,那么就不得不每扫描一条索引记录就得回表查询一次对应的行,这基本都是随机IO,因此按索引顺序读取数据的速度通常要比顺序地全表扫描慢
mysql可以使用同一个索引即满足排序,又用于查找行,如果可能的话,设计索引时应该尽可能地同时满足这两种任务。
只有当索引的列顺序和order by子句的顺序完全一致,并且所有列的排序方式都一样时,mysql才能够使用索引来对结果进行排序,如果查询需要关联多张表,则只有当orderby子句引用的字段全部为第一张表时,才能使用索引做排序。order by子句和查找型查询的限制是一样的,需要满足索引的最左前缀的要求,否则,mysql都需要执行顺序操作,而无法利用索引排序
union all,in,or都能够使用索引,但是推荐使用in
范围列可以用到索引,范围条件是:<、>,范围列可以用到索引,但是范围列后面的列无法用到索引,索引最多用于一个范围列
强制类型转换会全表扫描
create table user(id int,name varchar(10),phone varchar(11)); alter table user add index idx_1(phone); explain select * from user where phone=13800001234;(不会触发索引) explain select * from user where phone='13800001234';(触发索引)
更新十分频繁,数据区分度不高的字段上不宜建立索引
更新会变更B+树,更新频繁的字段建议索引会大大降低数据库性能.
类似于性别这类区分不大的属性,建立索引是没有意义的,不能有效的过滤数据,
一般区分度在80%以上的时候就可以建立索引,区分度可以使用 count(distinct(列名))/count(*) 来计算
创建索引的列,不允许为null,可能会得到不符合预期的结果
当需要进行表连接的时候,最好不要超过三张表,因为需要join的字段,数据类型必须一致
能使用limit的时候尽量使用limit
单表索引建议控制在5个以内
单索引字段数不允许超过5个(组合索引)
创建索引的时候应该避免以下错误概念
> 索引越多越好(错误)
> 过早优化,在不了解系统的情况下进行优化(错误)
到此这篇关于MySQL索引知识小妙招的文章就介绍到这了,更多相关MySQL索引知识内容请搜索极客世界以前的文章或继续浏览下面的相关文章希望大家以后多多支持极客世界!
请发表评论