• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

MySQL官方导出工具mysqlpump的使用

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

简介

mysqlpump 是 mysqldump 的一个衍生,本身也参考了 mydumper 的思路,支持了并行导出数据,因此导出数据的效率比 mysqldump 会高很多。

使用介绍

mysqlpump 的绝大多数参数与 mysqldump 是一样的,整体的使用方法和 mysqldump 没有太多的差异。这里列出一部分 mysqlpump 中比较重要且常用的参数。

参数

说明

--default-parallelism=#

设置并行导出的并发度,与 single-transaction 冲突

--single-transaction

创建一个单独的事务来导出所有的表

--exclude-databases=name

导出时排除掉某些库,多个库以逗号分隔

--exclude-tables=name

导出时排除掉某些表,多个表以逗号分隔

--include-databases=name

导出时包含某些库,多个库以逗号分隔

--include-tables=name

导出时包含某些表,多个表以逗号分隔

实际体验

这里对 mysqlpump 做一次简单的试用,目标实例选择 MySQL 5.7,参数中同时采用了single-transaction和default-parallelism,试试看这个冲突的效果。

mysqlpump 侧的输出参考如下信息:

root@VM-64-10-debian:~# mysqlpump -h172.100.10.10 -uroot -p --single-transaction --default-parallelism=16 --set-gtid-purged=OFF -B sbtest > sbtest.sql
Dump progress: 0/1 tables, 250/987400 rows
Dump progress: 0/5 tables, 117250/3946600 rows
Dump progress: 1/5 tables, 258750/3946600 rows
Dump progress: 1/5 tables, 385500/3946600 rows
Dump progress: 1/5 tables, 516750/3946600 rows
Dump progress: 1/5 tables, 639250/3946600 rows
Dump progress: 1/5 tables, 757000/3946600 rows
Dump progress: 1/5 tables, 885000/3946600 rows
Dump progress: 1/5 tables, 1005750/3946600 rows
Dump progress: 1/5 tables, 1114250/3946600 rows
Dump progress: 1/5 tables, 1223250/3946600 rows
Dump progress: 2/5 tables, 1312500/3946600 rows
Dump progress: 2/5 tables, 1430750/3946600 rows
Dump progress: 2/5 tables, 1553000/3946600 rows
Dump progress: 2/5 tables, 1680250/3946600 rows
Dump progress: 2/5 tables, 1809500/3946600 rows
Dump progress: 2/5 tables, 1940750/3946600 rows
Dump progress: 2/5 tables, 2060000/3946600 rows
Dump progress: 2/5 tables, 2175250/3946600 rows
Dump progress: 2/5 tables, 2295250/3946600 rows
Dump progress: 3/5 tables, 2413500/3946600 rows
Dump progress: 3/5 tables, 2554500/3946600 rows
Dump progress: 3/5 tables, 2693500/3946600 rows
Dump progress: 3/5 tables, 2818750/3946600 rows
Dump progress: 3/5 tables, 2941500/3946600 rows
Dump progress: 4/5 tables, 3056000/3946600 rows
Dump progress: 4/5 tables, 3172750/3946600 rows
Dump progress: 4/5 tables, 3280000/3946600 rows
Dump progress: 4/5 tables, 3372000/3946600 rows
Dump progress: 4/5 tables, 3444750/3946600 rows
Dump completed in 126555 milliseconds

可以看到当这两个参数同时启用的时候,mysqlpump 实际上还是在一个一个表的导出。single-transaction的优先级会高于default-parallelism。

去掉single-transaction再进行测试的时候,会发现一个比较有意思的现象,观察 MySQL 的 processlist,会有如下结果:

mysql> show processlist;
+---------+------+--------------------+------+---------+------+-------------------+----------------------------------------------------+
| Id      | User | Host               | db   | Command | Time | State             | Info                                               |
+---------+------+--------------------+------+---------+------+-------------------+----------------------------------------------------+
| 2763496 | root | 172.100.10.10:49086 | NULL | Query   |    0 | starting          | show processlist                                   |
| 2763585 | root | 172.100.10.10:49192 | NULL | Sleep   |  126 |                   | NULL                                               |
| 2763586 | root | 172.100.10.10:49194 | NULL | Sleep   |  126 |                   | NULL                                               |
| 2763587 | root |172.100.10.10:49196 | NULL | Sleep   |  126 |                   | NULL                                               |
| 2763588 | root | 172.100.10.10:49198 | NULL | Sleep   |  126 |                   | NULL                                               |
| 2763589 | root | 172.100.10.10:49200 | NULL | Sleep   |  126 |                   | NULL                                               |
| 2763590 | root | 172.100.10.10:49202 | NULL | Sleep   |  126 |                   | NULL                                               |
| 2763591 | root | 172.100.10.10:49204 | NULL | Sleep   |  126 |                   | NULL                                               |
| 2763592 | root | 172.100.10.10:49206 | NULL | Sleep   |  126 |                   | NULL                                               |
| 2763593 | root | 172.100.10.10:49208 | NULL | Sleep   |  126 |                   | NULL                                               |
| 2763594 | root | 172.100.10.10:49210 | NULL | Sleep   |  126 |                   | NULL                                               |
| 2763595 | root | 172.100.10.10:49212 | NULL | Query   |  125 | Sending to client | SELECT `id`,`k`,`c`,`pad`  FROM `sbtest`.`sbtest5` |
| 2763596 | root | 172.100.10.10:49214 | NULL | Query   |  125 | Sending to client | SELECT `id`,`k`,`c`,`pad`  FROM `sbtest`.`sbtest4` |
| 2763597 | root | 172.100.10.10:49216 | NULL | Query   |  125 | Sending to client | SELECT `id`,`k`,`c`,`pad`  FROM `sbtest`.`sbtest3` |
| 2763598 | root | 172.100.10.10:49218 | NULL | Query   |  125 | Sending to client | SELECT `id`,`k`,`c`,`pad`  FROM `sbtest`.`sbtest2` |
| 2763599 | root | 172.100.10.10:49220 | NULL | Query   |  125 | Sending to client | SELECT `id`,`k`,`c`,`pad`  FROM `sbtest`.`sbtest1` |
| 2763600 | root | 172.100.10.10:49222 | NULL | Sleep   |  125 |                   | NULL                                               |
| 2763601 | root | 172.100.10.10:49224 | NULL | Sleep   |  125 |                   | NULL                                               |
+---------+------+--------------------+------+---------+------+-------------------+----------------------------------------------------+
18 rows in set (0.00 sec)

mysql>

可以很明显的看出来,mysqlpump 的“并行导出”实际上只是基于表级别的并行导出,当存在单个大表的时候,导出的时间会被严重的影响,存在短板效应。

额外的疑问:如果default-parallelism和single-transaction有冲突的话,那么并行导出的时候是不是无法确认数据一致性?

实践出真实,打开 general_log 看一下导出时的操作:

2021-05-12T11:54:09.033215Z        75 Connect   [email protected] on  using SSL/TLS
2021-05-12T11:54:09.075347Z        75 Query     FLUSH TABLES WITH READ LOCK //开始锁表
2021-05-12T11:54:09.103132Z        75 Query     SHOW WARNINGS
2021-05-12T11:54:09.106382Z        75 Query     SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ
2021-05-12T11:54:09.106553Z        75 Query     SHOW WARNINGS
2021-05-12T11:54:09.106640Z        75 Query     START TRANSACTION WITH CONSISTENT SNAPSHOT
2021-05-12T11:54:09.108115Z        75 Query     SHOW WARNINGS
2021-05-12T11:54:09.127277Z        76 Connect   [email protected] on  using SSL/TLS
2021-05-12T11:54:09.127452Z        76 Query     SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ
2021-05-12T11:54:09.127590Z        76 Query     SHOW WARNINGS
2021-05-12T11:54:09.127680Z        76 Query     START TRANSACTION WITH CONSISTENT SNAPSHOT
2021-05-12T11:54:09.127790Z        76 Query     SHOW WARNINGS
......
2021-05-12T11:54:10.018813Z        90 Connect   [email protected] on  using SSL/TLS
2021-05-12T11:54:10.018944Z        90 Query     SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ
2021-05-12T11:54:10.019047Z        90 Query     SHOW WARNINGS
2021-05-12T11:54:10.019150Z        90 Query     START TRANSACTION WITH CONSISTENT SNAPSHOT
2021-05-12T11:54:10.019226Z        90 Query     SHOW WARNINGS
2021-05-12T11:54:10.025833Z        91 Connect   [email protected] on  using SSL/TLS
2021-05-12T11:54:10.025934Z        91 Query     SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ
2021-05-12T11:54:10.026048Z        91 Query     SHOW WARNINGS
2021-05-12T11:54:10.026141Z        91 Query     START TRANSACTION WITH CONSISTENT SNAPSHOT
2021-05-12T11:54:10.026219Z        91 Query     SHOW WARNINGS
2021-05-12T11:54:10.026293Z        75 Query     UNLOCK TABLES  //结束锁表
2021-05-12T11:54:10.026406Z        75 Query     SHOW WARNINGS

可以看到并行导出之前,有一个线程加上了全局读锁,然后等所有的并发线程打开事务之后才解锁了表,因此并行导出的时候也是数据一致的。

优缺点

  • 优点:
    • 并行备份数据库和数据库中的对象,比 mysqldump 更高效。
    • 更好的控制数据库和数据库对象(表,存储过程,用户帐户)的备份。
    • 备份进度可视化。
  • 缺点:  
    • 只能并行到表级别,如果有一个表数据量特别大那么会存在非常严重的短板效应。
    • 导出的数据保存在一个文件中,导入仍旧是单线程,效率较低。
    • 无法获取当前备份对应的binlog位置。

总结一下

尽管 mysqlpump 还有非常多的不足,但是相比较于原始的 mysqldump 已经有了非常大的进步,从这个工具的发布也可以看出来 Oracle 终于开始重视 MySQL 的生态工具了,期待官方提供更多的更优秀的生态工具。

以上就是MySQL官方导出工具mysqlpump的使用的详细内容,更多关于mysqlpump的使用的资料请关注极客世界其它相关文章!


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Redis Cluster添加、删除的完整操作步骤发布时间:2022-02-10
下一篇:
SQL查询包含下划线的字段内容操作发布时间:2022-02-08
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap